

Atomic Absorption

作者:

Deborah Bradshaw Atomic Spectroscopy Training and Consulting

Kenneth Neubauer PerkinElmer, Inc.

采用PinAAcle 500 原子吸收光谱仪测定 饮用水中的矿物质

前言

随着地理和地质的变化,以及污染的因素,水的质量有着很大的变化,因此,无论是消费用水还是工业用水,了解水的金属含量变得极其重要。

虽然现在有很多种技术可以测定水中的矿物质,但是最简单,最便宜,而且操作最快的技术即为原子吸收光谱仪。 因此,虽然现在ICP-OES和ICP-MS日益盛行,AAS依然广泛应用。

本实验着重研究采用珀金埃尔默PinAAcle 500火焰原子吸收光谱仪测定饮用水中的七个无毒元素。尽管其它低含量元素也能通过火焰原子吸收光谱仪进行测定,通常最常见的还是采用石墨炉原子吸收光谱仪,ICP-OES或者ICP-MS进行分析。

实验

水样是从城市和当地的井水进行取样的, 矿泉水是从当地杂货店购买的, 此外还有符合饮用水标准认证的水样。(饮用水中的痕量金属-高纯, 查尔斯顿, 南卡罗莱纳州, 美国)。

样品制备加入1%硝酸 (v/v),并加入0.1%氯化镧,对于测定该和镁时作为释放剂,测定钠和钾时作为抑电离剂。

样品的分析在表1和表2的条件下,采用PinAAcle500火焰原子吸收光谱仪进行测定。由于水样中矿物质含量较高,因此在测定时将燃烧头旋转了30°以抑制信号强度,从而满足矿物质分析需求。

此外,测定钾和钠采用发射模式,PinAAcle500能自动优化实验条件,拓宽了分析范围,因此即使含量较高也能进行测定。采用这种模式减小了测定钾和钠时样品的稀释倍数。

样品通过仪器标配的高灵敏度雾化器以自吸的方式引入到系统中。测定铜,铁和锌的过程中雾化器没有使用隔片(提供最大的灵敏度)。在测定钠,钾,镁和钙时使用了隔片。

表 1. PinAAcle 500 测定所有元素的仪器条件

参数	值
空气流量 (L/min)	2.5
乙炔流量(L/min)	10
读数时间 (sec)	3
重复次数	3

结果与讨论

所有元素校准曲线的相关系数为0.999或更好。校准曲线的精度通过独立校准验证 (ICV)溶液进行了评估,该溶液稀释了100倍以落在校准曲线的范围内。表3给出了ICV的测定结果,展示了校准曲线的精度。

表 3. ICV测定结果.

元素	浓度 (mg/L)	参考值 (mg/L)	% 回收率
Ca	5.00	4.86	97
Cu	0.25	0.26	104
Fe	1.00	1.00	100
Mg	5.00	4.88	98
K	5.00	4.78	96
Na	5.00	5.12	102
Zn	0.20	0.21	105

为了验证方法的可靠性,首先对参考样进行了测定,测定结果见表4.回收率在标准值范围内波动在10%以内,充分展示了方法的准确性。

表4. 参考样测定结果 (单位 mg/L).

元素	浓度 (mg/L)	参考值 (mg/L)	% 回收率
Ca	33.4	35.0	95
Cu	0.022	0.020	110
Fe	0.095	0.100	95
Mg	8.69	9.00	97
K	2.28	2.50	91
Na	5.90	6.0	98
Zn	0.070	0.070	100

表 2. PinAAcle 500 每个元素的分析条件

元素	波长 (nm)	狭缝 (nm)	模式	燃烧头角度 (°)	校准点 (mg/L)	校准曲线
Ca	422.67	0.7	吸收	30	0.5, 1.0, 2.0, 5.0, 10, 20, 40	非线性过零点
Cu	324.75	0.7	吸收	0	0.05, 0.10, 0.25, 0.50	线性过零点
Fe	248.33	0.2	吸收	0	0.05, 0.10, 0.25, 0.50, 1.0	线性过零点
Mg	285.21	0.7	吸收	30	0.5, 1.0, 2.0, 5.0, 10	非线性过零点
K	766.49	0.7	发射	30	2, 5, 10, 20, 30, 40, 50	非线性过零点
Na	589.00	0.2	发射	30	2, 5, 10, 20, 30, 40, 50	非线性过零点
Zn	213.86	0.7	发射	0	0.05, 0.10, 0.25, 0.50	线性过零点

Table 5. 样品测定结果 (单位 mg/L).

元素	城市水 (mg/L)	井水-1 (mg/L)	井水-2 (mg/L)	井水-3 (mg/L)	泉水-1 (mg/L)	泉水-2 (mg/L)
Ca	17.7	0.148	35.3	32.4	3.43	19.2
Cu	0.048	< DL	0.052	0.017	< DL	< DL
Fe	< DL	< DL	0.019	< DL	< DL	< DL
Mg	6.43	0.026	4.90	5.12	0.799	6.09
K	< 0	233*	4.89	4.10	0.73	0.69
Na	38.4	3.63	10.9	42.9	6.60	7.25
Zn	0.008	0.043	0.010	0.023	< DL	< DL

^{*}样品需要稀释10倍

通过建立的方法,对各区域的几个饮用水样品进行测定。城市水和井水是直接从水龙头搜集的,矿泉水是从购买的瓶装水中直接倒出来的。测定结果见表5.

水龙头中取出的4个样品中测定存在铜和锌,有可能是从铜管道,管件和焊料中浸出的。

进一步调查表明,该居民安装有软水机,以K作为抗衡离子以去除井水中高含量的的钙和镁。

如预期那样,泉水中未检出出铜和锌,只检测出矿物质。矿物质浓度值的变化显示了水源所在地的不同地质特点。

最后,测定十次空白溶液,通过计算三倍的标准偏差得出了铜,铁和锌的检出限。(i.e. 1% HNO₃),结果见表 6. 由于矿物元素含量较高,因此未测定这些元素的检出限(比如钾,钙,钠,镁)。此外,这些元素通常含量较高,因此,检出限对于它们而言毫无意义。

表6. 检出限

元素	检出限t (mg/L)
Cu	0.002
Fe	0.006
Zn	0.004

结论

此项工作表明PinAAcle500具有成功测定饮用水样品中各矿物元素的能力,包括城市水,井水以及泉水。通过旋转燃烧头和采用仪器的发射模式,能实现痕量元素和矿物元素的测定。仪器上自带的Syngistix触摸软件,能完全通过触摸屏界面来操作PinAAcle500原子吸收光谱仪。

当然, 您也可以通过连接上电脑来运行SyngistixAA软件。这种灵活性使PinAAcle 500成为饮用水分析的最佳选择。

使用的消耗品

部件	货号
高灵敏度雾化器	N3160144
自动进样器样品杯	B0193233 (15 mL) B0193234 (50 mL)
Ca 空心阴极灯	N3050114
Cu空心阴极灯	N3050121
Fe空心阴极灯	N3050126
Mg空心阴极灯	N3050144
Zn 空心阴极灯	N3050191
质控样, 21 Elements	N9300281
ICV标样	N9300224
Ca 标 (1000 mg/L)	N9303763 (125 mL) N9300108 (500 mL)
K 标 (1000 mg/L)	N9303779 (125 mL) N9300141 (500 mL)
Mg 标(1000 mg/L)	N9300179 (125 mL) N9300131 (500 mL)
Na 标 (1000 mg/L)	N9303785 (125 mL) N9300152 (500 mL)

珀金埃尔默企业管理(上海)有限公司

地址: 上海 张江高科技园区 张衡路1670号

邮编: 201203

电话: 021-60645888 传真: 021-60645999

www.perkinelmer.com.cn

PerkinElmer

要获取全球办事处的完整列表,请访问http:// www.perkinelmer.com.cn/AboutUs/ContactUs/ContactUs

版权所有 ©2014, PerkinElmer, Inc. 保留所有权利。PerkinElmer® 是PerkinElmer, Inc. 的注册商标。其它所有商标均为其各自持有者或所有者的财产。