PerkinElmer Health Sciences B.V. Rigaweg 22 9723 TH Groningen The Netherlands Phone: +31-50-544 59 00 SDS.Groningen@perkinelmer.com www.perkinelmer.com AlphaScreen SureFire Assay Kits **Trade name:** # **Article numbers:** | TGR38S10K | TGRAF2S50K | TGRCJS50K | TGRHS27S500 | TGRNFS500 | |-------------|--------------------------|-----------------------|--------------------------|--------------| | TGR38S500 | TGRAF2S-L | TGRCJS-L | TGRHS27S50K | TGRNFS50K | | TGR38S50K | TGRAF25-L
TGRAL2S10K | TGRCJS-L
TGRCMS10K | TGRHS27S-L | TGRNFSHV100 | | TGR38S-L | TGRAL2S10K | TGRCMS500 | TGRIGFS10K | TGRNFSHV-L | | TGR4E2S10K | TGRAL2S500
TGRAL2S50K | | TGRIGFS10K | TGRNFS-L | | TGR4E2S500 | TGRAL2S5UK
TGRAL2S-L | TGRCMS50K
TGRCMS-L | TGRIGFS500
TGRIGFS50K | TGRP532S10K | | | | | | | | TGR4E2S50K | TGRALS10K | TGRCOFS10K | TGRIGFS-L | TGRP532S500 | | TGR4E2S-L | TGRALS500 | TGRCOFS500 | TGRIKS10K | TGRP532S50K | | TGR4ES10K | TGRALS50K | TGRCOFS50K | TGRIKS500 | TGRP532S-L | | TGR4ES500 | TGRALS-L | TGRCOFS-L | TGRIKS50K | TGRP53S10K | | TGR4ES50K | TGRAS10K | TGREB2S10K | TGRIKS-L | TGRP53S500 | | TGR4ES-L | TGRAS500 | TGREB2S500 | TGRIRS10K | TGRP53S50K | | TGR702S10K | TGRAS50K | TGREB2S50K | TGRIRS500 | TGRP53SHV100 | | TGR702S500 | TGRAS-L | TGREB2S-L | TGRIRS50K | TGRP53SHV-L | | TGR702S50K | TGRB2S10K | TGREIF4S10K | TGRIRS-L | TGRP53S-L | | TGR702S-L | TGRB2S500 | TGREIF4S500 | TGRJPS10K | TGRPS10K | | TGR703S10K | TGRB2S50K | TGREIF4S50K | TGRJPS500 | TGRPS500 | | TGR703S500 | TGRB2S-L | TGREIF4S-L | TGRJPS50K | TGRPS50K | | TGR703S50K | TGRBCS10K | TGRELKS10K | TGRJPS-L | TGRPS-L | | TGR703S-L | TGRBCS500 | TGRELKS500 | TGRJS10K | TGRS1S10K | | TGR70S10K | TGRBCS50K | TGRELKS50K | TGRJS500 | TGRS1S500 | | TGR70S500 | TGRBCS-L | TGRELKS-L | TGRJS50K | TGRS1S50K | | TGR70S50K | TGRBS10K | TGRERS10K | TGRJS-L | TGRS1S-L | | TGR70S-L | TGRBS500 | TGRERS500 | TGRKAS10K | TGRS3S10K | | TGRA2S10K | TGRBS50K | TGRERS50K | TGRKAS500 | TGRS3S500 | | TGRA2S500 | TGRBS-L | TGRERS-L | TGRKAS50K | TGRS3S50K | | TGRA2S50K | TGRC9S10K | TGRESB10K | TGRKAS-L | TGRS3SHV100 | | TGRA2S-L | TGRC9S500 | TGRESB500 | TGRKBS10K | TGRS3SHV-L | | TGRA3S10K | TGRC9S50K | TGRESB50K | TGRKBS500 | TGRS3S-L | | TGRA3S500 | TGRC9S-L | TGRESBHV100 | TGRKBS50K | TGRS5S10K | | TGRA3S50K | TGRCBS10K | TGRESB-L | TGRKBS-L | TGRS5S500 | | TGRA3S-L | TGRCBS500 | TGRGAS10K | TGRMK3S10K | TGRS5S50K | | TGRA4S10K | TGRCBS50K | TGRGAS500 | TGRMK3S500 | TGRS5S-L | | TGRA4S500 | TGRCBS-L | TGRGAS50K | TGRMK3S50K | TGRS6P2S10K | | TGRA4S50K | TGRCHK1S10K | TGRGAS-L | TGRMK3S-L | TGRS6P2S500 | | TGRA4SHV100 | TGRCHK1S500 | TGRGBS10K | TGRMK4S10K | TGRS6P2S50K | | TGRA4SHV-L | TGRCHK1S50K | TGRGBS500 | TGRMK4S500 | TGRS6P2S-L | | TGRA4S-L | TGRCHK1S-L | TGRGBS50K | TGRMK4S50K | TGRS6PS10K | | TGRA5S10K | TGRCHK2S10K | TGRGBS-L | TGRMK4S-L | TGRS6PS500 | | TGRA5S500 | TGRCHK2S500 | TGRGDS10K | TGRMS10K | TGRS6PS50K | | TGRA5S50K | TGRCHK2S50K | TGRGDS500 | TGRMS500 | TGRS6PS-L | | TGRA5S-L | TGRCHK2S-L | TGRGDS50K | TGRMS50K | TGRSM1S10K | | | | | | | | TGRAF1S10K | TGRCJ2S10K | TGRGDS-L | TGRMS-L | TGRSM1S500 | |-------------|--------------|--------------|--------------|-------------| | TGRAF1S500 | TGRCJ2S500 | TGRH3S10K | TGRMTS10K | TGRSM1S50K | | TGRAF1S50K | TGRCJ2S50K | TGRH3S500 | TGRMTS500 | TGRSM1S-L | | TGRAF1S-L | TGRCJ2S-L | TGRH3S50K | TGRMTS50K | TGRSM2S10K | | TGRAF2S10K | TGRCJS10K | TGRH3S-L | TGRMTS-L | TGRSM2S500 | | TGRAF2S500 | TGRCJS500 | TGRHS27S10K | TGRNFS10K | TGRSM2S50K | | TGRSM2S-L | TGRT53S10K | TGRTALS-L | TGRTJS500 | TGRTT2AS50K | | TGRSM3S10K | TGRT53S500 | TGRTAPS10K | TGRTJS50K | TGRTT2AS-L | | TGRSM3S500 | TGRT53S50K | TGRTAPS500 | TGRTJS-L | TGRVRS10K | | TGRSM3S50K | TGRT53SHV100 | TGRTAPS50K | TGRTNFS10K | TGRVRS500 | | TGRSM3S-L | TGRT53SHV-L | TGRTAPSHV100 | TGRTNFS500 | TGRVRS50K | | TGRT2A2S10K | TGRT53S-L | TGRTAPSHV-L | TGRTNFS50K | TGRVRS-L | | TGRT2A2S500 | TGRT70S10K | TGRTAPS-L | TGRTNFSHV100 | | | TGRT2A2S50K | TGRT70S500 | TGRTESB10K | TGRTNFSHV-L | | | TGRT2A2S-L | TGRT70S50K | TGRTESB500 | TGRTNFS-L | | | TGRT2AS10K | TGRT70S-L | TGRTESB50K | TGRTS3S10K | | | TGRT2AS500 | TGRTA1S10K | TGRTESBHV100 | TGRTS3S500 | | | TGRT2AS50K | TGRTA1S500 | TGRTES-L | TGRTS3S50K | | | TGRT2AS-L | TGRTA1S50K | TGRTIKS10K | TGRTS3SHV100 | | | TGRT38S10K | TGRTA1S-L | TGRTIKS500 | TGRTS3SHV-L | | | TGRT38S500 | TGRTALS10K | TGRTIKS50K | TGRTS3S-L | | | TGRT38S50K | TGRTALS500 | TGRTIKS-L | TGRTT2AS10K | | | TGRT38S-L | TGRTALS50K | TGRTJS10K | TGRTT2AS500 | | | Composition | | Hazards identification | |-------------------------|-------------------|-------------------------------------| | TGRAB100ML
TGRAB10ML | Activation Buffer | GHS07; H315, H317, H319, H412 | | TGRDB100ML
TGRDB10ML | Dilution Buffer | GHS07; H315, H317, H319, H412 | | TGRLB100ML
TGRLB10ML | Lysis Buffer (5x) | GHS07; H302, H315, H317, H319, H412 | | TGR-***-L | Control Lysate | GHS07; H315, H317, H319 | | RB | Reaction Buffer | GHS07; H315, H317, H319, H412 | ^{*** =} assay target name # AlphaScreen SureFire Activation Buffer **TGR BioSciences** Chemwatch: 5233-12 Chemwatch Hazard Alert Code: 2 Issue Date: 07/12/2016 Print Date: 11/01/2017 Version No: 2.1.1.1 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements L.GHS.USA.EN # **SECTION 1 IDENTIFICATION** #### **Product Identifier** | Product name | AlphaScreen SureFire Activation Buffer | |-------------------------------|--| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use Relevant identified uses Use according to manufacturer's directions. # Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | TGR BioSciences | |-------------------------|---| | Address | 31 Dalgleish St SA Thebarton 5031 Australia | | Telephone | 61 8 8354 6180 | | Fax | 61 8 8354 6188 | | Website | www.tgrbio.com | | Email | info@tgrbio.com | # **Emergency phone number** | Association / Organisation | CHEMTREC/PerkinElmer | |-----------------------------------|----------------------| | Emergency telephone numbers | +1 703-527-3887 | | Other emergency telephone numbers | +31 50 5445971 | # **SECTION 2 HAZARD(S) IDENTIFICATION** # Classification of the substance or mixture # NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 #### Label elements **GHS** label elements SIGNAL WORD WARNING # Hazard statement(s) | H315 | Causes skin irritation. | |------|--| | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Chemwatch: 5233-12 Page 2 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Activation Buffer Not Applicable # Precautionary statement(s) Prevention | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | |------|--|--| | P261 | Avoid breathing mist/vapours/spray. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | # Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | |----------------|--| | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | # Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|--| | 151-21-3 | <=2.5 | sodium lauryl sulfate | | 55965-84-9 | <=0.5 | isothiazolinones, mixed | | | balance | Ingredients determined not to be hazardous | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. # **SECTION 4 FIRST-AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------
---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # Most important symptoms and effects, both acute and delayed See Section 11 # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 FIRE-FIGHTING MEASURES** # **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Chemwatch: 5233-12 Issue Date: 07/12/2016 Page 3 of 11 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Activation Buffer # Special protective equipment and precautions for fire-fighters | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | |-----------------------|--| | Fire/Explosion Hazard | Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposition may produce toxic fumes of: carbon dioxide (CO2) hydrogen chloride phosgene nitrogen oxides (NOx) sulfur oxides (SOx) | | | , other pyrolysis products typical of burning organic material. | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCI). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. If contamination of drains or waterways occurs, advise emergency services. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling | | 9 | |-------------------|--| | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | Chemwatch: 5233-12 Page 4 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 # AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 Suitable container - Polyethylene or polypropylene container. - Packing as recommended by manufacturer - ▶ Check all containers are clearly labelled and free from leaks Storage incompatibility ▶ Avoid reaction with oxidising agents #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------|-----------------------|-----------|----------|-----------| | sodium lauryl sulfate | Sodium lauryl sulfate | 3.9 mg/m3 | 43 mg/m3 | 260 mg/m3 | | | | | | | | Ingredient | Original IDLH | Revised IDLH | |-------------------------|---------------|---------------| | sodium lauryl sulfate | Not Available | Not Available | | isothiazolinones, mixed | Not Available | Not Available | #### MATERIAL DATA
Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below Chemwatch: 5233-12 Page 5 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 # AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 #### Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Butyl rubber gloves - Nitrile rubber gloves # **Body protection** Hands/feet protection See Other protection below #### Other protection - Overalls P.V.C. apron. - Barrier cream. - Skin cleansing cream. - ▶ Eye wash unit. Thermal hazards Not Available #### Respiratory protection Type AK-P Filter of sufficient capacity, (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|--------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class 1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave
the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Liquid; mixes with water. | | | |------------------|---------------------------|---|----------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | Chemwatch: 5233-12 Page 6 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Activation Buffer | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | |--|----------------|----------------------------------|----------------| | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | | Hazardous decomposition products | See section 5 | |----------------------------------|--| | SECTION 11 TOXICOLOG | GICAL INFORMATION | | Information on toxicologic | cal effects | | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids. | | Chronic | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones have a lower potential for sensitization and cocumented immunological cross-reaction with the chlorinated isothiazolinones are sensitized persons even with concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones. The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*: The strongest sensitisers are the chlorinated isothiazolinones. There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones. By avoiding the use of chlorinated isothiazolinones
will result in reduced risk of allergic reactions in | Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal Chemwatch: 5233-12 Page 7 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 ## AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 • care products, it is only with the passage of time that proof of their safety in use or otherwise will become available. B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimurium strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | AlphaScreen SureFire
Activation Buffer | TOXICITY Not Available | IRRITATION Not Available | | |---|---|--|--| | | TOXICITY | IRRITATION | | | sodium lauryl sulfate | Dermal (rabbit) LD50: >500 mg/kg ^[1] Oral (rat) LD50: 977 mg/kg ^[1] | Eye (rabbit):100 mg/24 hr-moderate Skin (human): 25 mg/24 hr - mild | | | isothiazolinones, mixed | TOXICITY Oral (rat) LD50: 53 mg/kg ^[2] | IRRITATION Not Available | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data | | | extracted from RTECS - Register of Toxic Effect of chemical Substances for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group. Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. Acute toxicity. These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver. Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg): C10-; 290-580 C10-16-, and C12-; 1000-2000 C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000 C14-18, C16-18-; >5000 The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs. Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same The counter ion does not appear to influence the toxicity in a substantial way. Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg): C12-: 200 SODIUM LAURYL SULFATE C12-13 and C10-16-:>500 Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates. There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates In skin irritation tests using rabbits (aqueous solutions, OECD TG 404): C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive Under occlusive conditions: C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alphaolefin sulfonates of comparable chain lengths. In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only a mild irritant. Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected. However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking. Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation Chemwatch: 5233-12 Page 8 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 dermatitis in predisposed individuals Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium). C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies. No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ. Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay). alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected. Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies
with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day). alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates. Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm. Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death). The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAELs for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits. For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental toxicants. Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates Alkyl sulfates (AS) anionic surfactants are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). An exception has been made for C12 AS which is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed) and R38 and R41 (CESIO 2000). AS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC. AS are readily absorbed from the gastrointestinal tract after oral administration. Penetration of AS through intact skin appears to be minimal. AS are extensively metabolized in various species resulting in the formation of several metabolites. The primary metabolite is butyric acid-4-sulfate. The major site of metabolis is the liver. AS and their metabolites are primarily eliminated via the urine and only minor amounts are eliminated via the faeces. In rats about 70-90% of the dose was eliminated via the urine within 48 hours after oral, intravenous or intraperitoneal administration of 1 mg of AS per rat. The acute toxicity of AS in animals is considered to be low after skin contact or oral intake. For a homologous series of AS (C8 to C16), maximum swelling of stratum corneum (the outermost layer of epidermis) of the skin was produced by the C12 homologue. This is in accordance with the fact that the length of the hydrophobic alkyl chain influences the skin irritation potential. Other studies have shown that especially AS of chain lengths C11, C12 and C13 remove most amino acids and soluble proteins from the skin during washing. Concentrated samples of AS are skin irritants in rabbits and guinea pigs. AS are non-irritant to laboratory animals at a 0.1% concentration. C12 AS is used in research laboratories as a standard substance to irritate skin and has been shown to induce an irritant eczema. AS were found, by many authors, to be the most irritating of the anionic surfactants, although others have judged the alkyl sulfates only as irritant as laurate (fatty acid soap). A structure/effect relationship with regard to the length of the alkyl chain can also be observed on mucous membranes. The maximum eye irritation occurs at chain lengths of C10 to C14. In acute ocular tests, 10% C12 AS caused corneal damage to the rabbit eyes if not irrigated. Another study showed that a 1.0% aqueous C12 AS solution only had a slight effect on rabbit eyes, whereas 5% C12 AS caused temporary conjunctivitis, and 25% C12 AS resulted in corneal In a 13-week feeding study, rats were fed dietary levels of 0, 40, 200, 1,000 or 5,000 ppm of C12 AS. The only test material related effect observed was an increase in absolute organ weights in the rats fed with the highest concentration which was 5,000 ppm. The organ weights were not further specified and no other abnormalities were found. In a mutagenicity study, rats were fed 1.13 and 0.56% C12 AS in the diet for 90 days. This treatment did not cause chromosomal aberrations in the bone marrow Mutagenicity studies with Salmonella typhimurium strains (Ames test) indicate no mutagenic effects of C12 AS). The available long-term studies in experimental animals (rats and mice) are inadequate to evaluate the carcinogenic potential of AS. However, in studies in which animals were administered AS up to 4% AS, there was no indication of increased risk of cancer after oral ingestion. No specific teratogenic effects were observed in rabbits, rats or mice when pregnant animals were dosed with 0.2, 2.0, 300 and 600 mg C12 AS/kg body weight/day by gavage during the most important period of organogenesis (day 6 to 15 of pregnancy for mice and rats and day 6 to 18 of pregnancy for rabbits). Reduced litter size, high incidence of skeletal abnormalities and foetal loss were observed in mice at 600 mg C12 AS/kg/day, a dose level which also caused severe toxic effects in the parent animals in all three species . An aqueous solution of 2% AS was applied (0.1 ml) once daily to the dorsal skin (2 x 3 cm) of pregnant mice from day 1 to day 17 of gestation. A solution of 20% AS was tested likewise from day 1 to day 10 of gestation. The mice were killed on days 11 and 18, respectively. A significant decrease in the number of implantations was observed when mice were treated with 20% AS compared to a control group which was dosed with water. No evidence of teratogenic effects was noted. When aqueous solutions of 2% and 20% AS (0.1 ml) were applied once per day to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice from day 12 to day 17 of gestation no effects on pregnancy outcome were detected. Treatment with 20% AS resulted in growth retardation of suckling mice, but this effect disappeared after weaning. A 10% AS solution (0.1 ml) was applied twice daily to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice during the preimplantation period (days 0-3 of gestation). A significant number of embryos collected on day 3 as severely deformed or remained at the morula stage. The number of embryos in the oviducts was significantly greater for the mice dosed with AS as compared to the control mice. No pathological changes were detected in the major organs of the dams NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. Eye (None) None: None None rabbit None 250 ugSkin (rabbit):25 mg/24 hr-moderate Skin (None) None: None rabbit None 50 mg/24Eye (rabbit) 10: mgChemwatch: 5233-12 Page 9 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 ### AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 #### ISOTHIAZOLINONES. MIXED The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's gedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. #### SODIUM LAURYL SULFATE & ISOTHIAZOLINONES, MIXED Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the
irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Leaend: ★ - Data available but does not fill the criteria for classification 🥓 – Data required to make classification available O - Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** ### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------|---------------------|--------------------|---|---------------|--------| | sodium lauryl sulfate | LC50 | 96 | Fish | 0.59mg/L | 4 | | sodium lauryl sulfate | EC50 | 48 | Crustacea | 0.67mg/L | 4 | | sodium lauryl sulfate | EC50 | 96 | Algae or other aquatic plants | 1.2mg/L | 4 | | sodium lauryl sulfate | BCF | 1 | Fish | 0.85mg/L | 4 | | sodium lauryl sulfate | EC50 | 96 | Crustacea | 0.12mg/L | 4 | | sodium lauryl sulfate | NOEC | 0.08 | Fish | 0.0000013mg/L | 4 | | Legend: | Aquatic Toxicity Da | , | CHA Registered Substances - Ecotoxicologica
ordatabase - Aquatic Toxicity Data 5. ECETOC
mation Data 8. Vendor Data | | | Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways. Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------|-------------------------|------------------| | sodium lauryl sulfate | HIGH | HIGH | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |-----------------------|------------------| | sodium lauryl sulfate | LOW (BCF = 7.15) | # Mobility in soil | Ingredient | Mobility | |-----------------------|-------------------| | sodium lauryl sulfate | LOW (KOC = 10220) | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. Otherwise: Chemwatch: 5233-12 Page 10 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 ### AlphaScreen SureFire Activation Buffer Print Date: 11/01/2017 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - ▶ Recvcling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ► DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible - ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** **Marine Pollutant** Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture # SODIUM LAURYL SULFATE(151-21-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air # ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable # **Federal Regulations** # Superfund Amendments and Reauthorization Act of 1986 (SARA) #### SECTION 311/312 HAZARD CATEGORIES | Immediate (acute) health hazard | Yes | |---------------------------------|-----| | Delayed (chronic) health hazard | No | | Fire hazard | No | | Pressure hazard | No | | Reactivity hazard | No | # US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4) None Reported #### **State Regulations** # US. CALIFORNIA PROPOSITION 65 None Reported | National Inventory | Status | |----------------------------------|-----------------------------| | Australia - AICS | N (isothiazolinones, mixed) | | Canada - DSL | Y | | Canada - NDSL | N (isothiazolinones, mixed) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | N (isothiazolinones, mixed) | Chemwatch: 5233-12 Page 11 of 11 Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Activation Buffer | Japan - ENCS | Y | |---------------------|---| | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | N (isothiazolinones, mixed) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |-------------------------|---| | sodium lauryl sulfate | 151-21-3, 1335-72-4, 3088-31-1, 9004-82-4 | | isothiazolinones, mixed | 55965-84-9, 96118-96-6 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. # **AlphaScreen SureFire Dilution Buffer** **TGR BioSciences** Chemwatch Hazard Alert Code: 2 Issue Date: **08/12/2016** Print Date: **11/01/2017** L.GHS.USA.EN Chemwatch: **5233-16**
Version No: **2.1.1.1** Safety Data Sheet according to OSHA HazCom Standard (2012) requirements # **SECTION 1 IDENTIFICATION** #### **Product Identifier** | Product name | AlphaScreen SureFire Dilution Buffer | |-------------------------------|--------------------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use Relevant identified uses Use according to manufacturer's directions. # Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | TGR BioSciences | |---| | 31 Dalgleish St SA Thebarton 5031 Australia | | 61 8 8354 6180 | | 61 8 8354 6188 | | www.tgrbio.com | | info@tgrbio.com | | | #### **Emergency phone number** | Association / Organisation | CHEMTREC/PerkinElmer | |-----------------------------------|----------------------| | Emergency telephone numbers | +1 703-527-3887 | | Other emergency telephone numbers | +31 50 5445971 | # **SECTION 2 HAZARD(S) IDENTIFICATION** # Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 #### Label elements GHS label elements SIGNAL WORD WA WARNING # Hazard statement(s) | H315 | Causes skin irritation. | |------|--| | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Chemwatch: 5233-16 Page 2 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Dilution Buffer Not Applicable #### Precautionary statement(s) Prevention | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | |------|--|--| | P261 | id breathing mist/vapours/spray. | | | P273 | void release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | # Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | | |----------------|---|--|--| | P302+P352 | N SKIN: Wash with plenty of soap and water. | | | | P305+P351+P338 | IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | # Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|--| | 77-86-1 | <0.3 | tris(hydroxymethyl)aminomethane | | 9048-46-8 | <2.5 | <u>albumin</u> | | 9005-64-5 | <0.3 | sorbitan monolaurate, ethoxylated | | 55965-84-9 | <0.5 | isothiazolinones, mixed | | | balance | Ingredients determined not to be hazardous | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. # **SECTION 4 FIRST-AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # Most important symptoms and effects, both acute and delayed See Section 11 # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 FIRE-FIGHTING MEASURES** # **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. Chemwatch: 5233-16 Page 3 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Dilution Buffer #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Special protective equipment and precautions for fire-fighters # Fire Fighting - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - ▶ Equipment should be thoroughly decontaminated after use - ▶ Not considered to be a significant fire risk. - ▶ Expansion or decomposition on heating may lead to violent rupture of containers. - Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). - ▶ May emit acrid smoke. Non combustible. Decomposition may produce toxic fumes of: # Fire/Explosion Hazard carbon dioxide (CO2) hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes. #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|---| | Major Spills | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before | - Major Spills - disposal. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. ► Observe manufacturer's storage and handling recommendations contained within this SDS. - If contamination of drains or waterways occurs, advise emergency services. After clean up operations,
decontaminate and launder all protective clothing - and equipment before storing and re-using. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** Other information #### Precautions for safe handling ▶ DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke Safe handling Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Chemwatch: 5233-16 Version No: 2.1.1.1 # Page 4 of 11 #### Issue Date: 08/12/2016 Print Date: 11/01/2017 AlphaScreen SureFire Dilution Buffer # Conditions for safe storage, including any incompatibilities #### Suitable container - ► Polyethylene or polypropylene container. - Packing as recommended by manufacturer - Check all containers are clearly labelled and free from leaks - Storage incompatibility - Avoid reaction with oxidising agents #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA Not Available #### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|--|--------------------------------|--------|--------| | tris(hydroxymethyl)aminomethane | Tris-hydroxymethylaminomethane; (THAM) | 18 mg/m3 190 mg/m3 1,200 mg/m3 | | | | | | | | | | Ingredient | Original IDLH | Revised IDLH | | | | tris(hydroxymethyl)aminomethane | Not Available | Not Available | | | | albumin | Not Available | Not Available | | | | sorbitan monolaurate, ethoxylated | Not Available | Not Available | | | | isothiazolinones, mixed | Not Available | Not Available | | | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | Type of Contaminant: | Air Speed: | | |---|------------------------------|--| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection # Safety glasses with side shields Chemical goggles #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Chemwatch: 5233-16 Page 5 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 ### AlphaScreen SureFire Dilution Buffer Print Date: 11/01/2017 Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity #### Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on
the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ► Butyl rubber gloves ► Nitrile rubber gloves - **Body protection** See Other protection below # Other protection - Overalls - ▶ P.V.C. apron ▶ Barrier cream. - Skin cleansing cream. - ▶ Eye wash unit - Thermal hazards Not Available # Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|--------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class 1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Liquid; mixes with water. | | | |-----------------|---------------------------|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature
(°C) | Not Applicable | Chemwatch: 5233-16 Page 6 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Dilution Buffer | pH (as supplied) | Not Available | Decomposition temperature | Not Available | |--|----------------|----------------------------------|----------------| | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | |--------------|--| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to bilstering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye
damage/ulceration may occur. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids. | | Chronic | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is a possibility that unintended contact with this product (such as through a cut, needle stick, eye or mucous membrane, or inhalation) could result in allergic or hypersensitivity reactions. Such reactions are more likely following repeated exposures or in persons with a pre-existing allergy to certain proteins. Dusts produced by proteins are capable, under certain conditions, of sensitising workers by virtue of the bodies reaction to foreign proteins. Typical allergic asthma may be rapidly produced after exposure, with symptoms may include chronic cough, sputum production, fever, myalgia, fatigue, airway obstruction; chest radiographs may show a generalised reticulonodular pattern, or basal or apical fibrosis. In addition there may be retrosternal discomfort, headache, stomach-ache and general severe dyspnoea may develop giving a clinical picture similar to that of farmer's lung and allied conditions of extrinsic allergic alveolitis. No irritation is likely after brief skin contact, but prolonged contact in the presence of moisture may result in soreness, redness, inflammation and possible ulceration of the skin. Repeated attacks may lead to permanent impairment of lung function due to fibrotic change. The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how conta | Chemwatch: 5233-16 Page 7 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Dilution Buffer Print Date: 11/01/2017 antimicrobial efficiency but at the same time produces a greater potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*: - ► The strongest sensitisers are the chlorinated isothiazolinones. - There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. - ► There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones. - Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones. - By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced. - Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and iudicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons. - Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available. * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimurium strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | AlphaScreen SureFire Dilution
Buffer | TOXICITY Not Available | IRRITATION Not Available | |---|---|--| | tris(hydroxymethyl)aminomethane | TOXICITY Oral (rat) LD50: 5900 mg/kg ^[2] | IRRITATION Not Available | | albumin | TOXICITY Not Available | IRRITATION Not Available | | sorbitan monolaurate,
ethoxylated | TOXICITY Oral (rat) LD50: 39269 mg/kg ^[2] | IRRITATION Skin (human): 15 mg/3d mild | | isothiazolinones, mixed | TOXICITY Oral (rat) LD50: 53 mg/kg ^[2] | IRRITATION Not Available | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances > For tris(hydroxymethyl)aminomethane (TRIS AMINO; CAS 77-88-1) and its surrogates 2-amino-2-methyl-1,3-propanediol (AMPD; CAS 115-69-5) and monoisobutanolamine (AMP; CAS 124-68-5) > TRIS AMINO and the surrogate chemicals have displayed little if any toxicity to humans during their long history of use as human drugs and/or in personal care products and cosmetics. TRIS AMINO has found use as an IV drug for the management of acidosis in humans for many years and the toxicity of AMPD and AMP have been reviewed by the Cosmetic Ingredient Review Expert Panel which concluded that these materials are safe as used in cosmetic formulations up to 1% Acute toxicity: Mammalian toxicity studies have displayed similar results. The oral LD50 value for TRIS AMINO is 5500 mg/kg in the mouse, and its surrogates range from 2150 to greater than 5000 mg/kg in the rat and mouse. TRIS AMINO was non-irritating to eyes when a 40% aqueous solution was applied to the eyes of rabbits (pH 10.4 for 0.1M aqueous solution). In contrast, 95% AMP in water was severely irritating to the eyes, presumably due to the severely alkaline pH of the test solution used (pH 11.3 for 0.1M aqueous solution); however, more neutral cosmetic formulations containing lower concentrations of AMP are only minimally irritating. There is no sensitisation data available for TRIS AMINO; however, based on the following data, TRIS AMINO is not expected to be a sensitiser. Laboratory animal test samples of AMP did not cause allergic skin reactions when tested in guinea pigs following topical or intradermal administration. In patch tests with humans, AMP and cosmetic formulations containing either AMP or AMPD were negative for dermal sensitisation. #### TRIS(HYDROXYMETHYL)AMINOMETHANE Repeated dose toxicity: Repeated-dose mammalian toxicity studies conducted on TRIS AMINO and the two surrogate chemicals indicate that the compounds are generally well-tolerated at concentrations as high as 500 mg/kg/day via IV infusion for TRIS AMINO and ingestion of up to 3200 ppm in the rodent diet (250-750 mg/kg/day for rats and mice, estimated). A number of human clinical trials of the IV infusion of TRIS AMINO have also been successfully conducted. In all studies, the only target tissue, when observed at all, has been the liver with AMP. Human clinical studies with Keterolac(a major component of which is TRIS AMINO) have suggested that patients with decreased liver function not be given the drug over extended treatment periods based upon changes in several clinical chemistry parameters. Ingestion of relatively high dosages of AMP has caused liver histopathological changes in rats and dogs. The most significant toxicological activity has been a foetotoxic effect of AMP when ingested at relatively high levels by pregnant rats. Subsequent dermal exposure to comparable dosages failed to elicit a developmental effect in rats. Overall, there have been no consistently-noted observations or treatment-related findings among the numerous repeated-dose mammalian toxicity studies that have been conducted over at last 50 years on these compounds that would indicate long-term significant toxicity of either compound at typical human exposure levels. Reflective of these findings is the fact that both TRIS AMINO and AMP display similar patterns of excretion from the body, being primarily eliminated unchanged via the urine over a relatively short period of time. Further, no evidence of either direct reactivity or metabolism to reactive species toward genetic material has been observed. Genetic toxicity: Studies conducted on the TRIS AMINO and the surrogate substances in the presence or absence of mammalian metabolic enzymes have all been negative. #### SORBITAN MONOLAURATE. **ETHOXYLATED** For Group D aliphatic esters:(sorbitan fatty esters) According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group D substances are esters of monoacids, mainly common fatty
acids, and sorbitan (which is derived from sorbitol - a natural carbohydrate sweetener). The fatty acids include lauric, stearic, oleic acids and coca fatty acids (mainly lauric and myristic acids). The hydroxy group in the sorbitan represents the alcohol portion of the ester linkage. The Group D esters are carbohydrate-derived esters since the ester linkage is connected to the hydroxy group(s) of sorbitan. They may have single ester linkages (i.e., sorbitan monoester) or may have multiple ester linkages, as in the case of sorbitan sesquioleate and sorbitan trioleate. Multiple ester linkages with long-chain fatty acids increase lipophilicity and also tend to diminish water solubility. The sorbitan esters are non-ionic surfactant-active agents that typically find use as emulsifiers, stabilizers, and thickeners in foods, cosmetics and medical products. Chemwatch: 5233-16 Page 8 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Dilution Buffer Print Date: 11/01/2017 Acute toxicity: Sorbitan esters do not represent a toxicological concern since they are derived from naturally occurring materials and the parent esters are ultimately metabolised back to these same natural constituents: namely, sorbitan and common fatty acids, both of which have low orders of toxicity. The oral LD50 in rats ranged from >2.9 g/kg to > 39.8 g/kg. Numerous sorbitan esters have been studied by acute oral and dermal administration. Results from these studies support the general conclusion that sorbitan fatty acid esters have low orders of acute toxicity. Repeated Dose Toxicity. A large number of subchronic oral and dermal studies and chronic oral feeding studies have been carried out for sorbitan monolaurate, sorbitan monostearate and sorbitan monooleate, For sorbitan monostearate, no adverse effects were reported in rats fed 5% concentrations of the test substance in the diet for 6 weeks. The NOAEL was estimated to be 5% or approximately 2500 mg/kg/day. In 2-year feeding studies at 5, 10 and 20% in the diet rats tolerated sorbitan moonostearate with no adverse effects. However, at 20%, there was a small but significant decrease on growth rate in male rates. Hence, the NOAEL was 10% in the diet or approximately 5000 mg/kg/day in rats, based on these findings. In a 80-week dietary study in mice, no adverse effects were observed for sorbitan monostearate at 2% concentration in the diet and the NOAEL was 2% or approximately 2600 mg/kg/day. Subchronic studies have also been carried out with sorbitan, fatty acids C6-10, tetraester (CAS 228573-47-5).. Oral gavage studies for 28 days at dose levels up to 1000 mg/kg /day resulted in no systemic toxicity. Therefore, the NOAEL was 1000 mg/kg/day for this tetraester. Since the sesquioleate and trioleate of sorbitan are merely multiple ester homologs of sorbitan monooleate, they would be expected to show similar effects, given their structural similarities and potential to be metabolised to the monooleate. Sensitisation: Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitising, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix. Reproductive and developmental toxicity: Limited reproductive toxicity data have been reported for the sorbitan esters. In a 2-year feeding studies in rats with sorbitan monostearate, there were no effects on gestation and fertility at any dose level (0, 5, 10 and 20% in the diet) but survival of the newborn animals and maternal lactation were slightly diminished at the 20% level. Sorbitol was also studied indirectly as part of a mixture of hydrogenated starch hydrolysates (HSH) which contained about 7% sorbitol as part of the polyhydric alcohol mixture. The HSH mixture was investigated as part of a two-year ingestion study, a multigeneration reproduction study and a teratology study. At concentrations of 18% in drinking water (3000-7000 mg/kg/day), HSH did not produce reproductive or developmental effects . These results indicate that sorbitol does not cause reproductive/ developmental toxicity in animals. Given these findings and the low order of toxicity of natural fatty acids, it seems unlikely that sorbitan esters would present reproductive and developmental toxicity concerns. Genotoxicity: Sorbitan monostearate (CAS 1338-41-6) was found to be negative in the Ames assay. In addition, the non-HPV substance, sorbitan fatty acid C6-10 tetraester (CAS 228573-47-5), did not cause any mutagenic effects in the Salmonella in vitro test. These substances bridge the low and high carbon range of most of the sorbitan esters and the chemistry of the sorbitan esters (i.e., sorbitan/sorbitol, natural fatty acids) does not suggest the likelihood that the sorbitan esters are electrophilic or reactive in nature. Thus, it is not likely that the substances in Group D cause mutagenic effects. Sorbitan monostearate did not transform primary Syrian golden hamster embryo cells. As discussed above for point mutation, the chemistry of the sorbitan esters does not suggest the likelihood that these substances, or their constituent substructures (i.e., sorbitol, fatty acids) are reactive or electrophilic in nature. Carcinogenicity: Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture. sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study. #### ISOTHIAZOLINONES, MIXED The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria. involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. #### TRIS(HYDROXYMETHYL)AMINOMETHANE & ISOTHIAZOLINONES, MIXED Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. # **ALBUMIN & ISOTHIAZOLINONES, MIXED** No significant acute toxicological data identified in literature search. #### SORBITAN MONOLAURATE. ETHOXYLATED & ISOTHIAZOLINONES, MIXED The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification Data required to make classification available N - Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------------------|----------|--------------------|-----------|--------------|--------| | tris(hydroxymethyl)aminomethane | LC50 | 96 | Fish | 6333.997mg/L | 3 | | tris(hvdroxymethyl)aminomethane | EC50 | 48 | Crustacea | >980mg/L | 2 | Chemwatch: 5233-16 Page 9 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 ### AlphaScreen SureFire Dilution Buffer | tris(hydroxymethyl)aminomethane | EC50 | 96 | Algae or other aquatic plants | 163.049mg/L | 3 |
---------------------------------|--|----|-------------------------------|-------------|---| | tris(hydroxymethyl)aminomethane | NOEC | 48 | Crustacea | 520mg/L | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|-------------------------|------------------| | tris(hydroxymethyl)aminomethane | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---------------------------------|------------------------| | tris(hydroxymethyl)aminomethane | LOW (LogKOW = -1.5606) | #### Mobility in soil | Ingredient | Mobility | |---------------------------------|----------------| | tris(hydroxymethyl)aminomethane | HIGH (KOC = 1) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - Fig ontainer can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 TRANSPORT INFORMATION** #### Labels Required **Marine Pollutant** Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture TRIS(HYDROXYMETHYL)AMINOMETHANE(77-86-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Version No: **2.1.1.1** #### AlphaScreen SureFire Dilution Buffer Issue Date: **08/12/2016**Print Date: **11/01/2017** US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### ALBUMIN(9048-46-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### SORBITAN MONOLAURATE, ETHOXYLATED(9005-64-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable #### **Federal Regulations** # Superfund Amendments and Reauthorization Act of 1986 (SARA) #### SECTION 311/312 HAZARD CATEGORIES | Immediate (acute) health hazard | Yes | |---------------------------------|-----| | Delayed (chronic) health hazard | No | | Fire hazard | No | | Pressure hazard | No | | Reactivity hazard | No | #### US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4) None Reported # State Regulations # US. CALIFORNIA PROPOSITION 65 None Reported | National Inventory | Status | |----------------------------------|---| | Australia - AICS | N (isothiazolinones, mixed) | | Canada - DSL | Υ | | Canada - NDSL | N (isothiazolinones, mixed; tris(hydroxymethyl)aminomethane; sorbitan monolaurate, ethoxylated) | | China - IECSC | Y | | Europe - EINEC / ELINCS /
NLP | N (isothiazolinones, mixed) | | Japan - ENCS | N (albumin) | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | N (isothiazolinones, mixed) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** #### Other information # Ingredients with multiple cas numbers | Name | CAS No | |---------------------------------|--| | tris(hydroxymethyl)aminomethane | 77-86-1, 108195-86-4, 119320-15-9, 25149-07-9, 68755-45-3, 83147-39-1, 857365-23-2 | | albumin | 9048-46-8, 70024-90-7, 68551-06-4, 94349-60-7, 9048-49-1, 12623-95-9, 54577-67-2 | | isothiazolinones, mixed | 55965-84-9, 96118-96-6 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # Definitions and abbreviations PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level Chemwatch: 5233-16 Page 11 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Dilution Buffer TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. # AlphaScreen SureFire Lysis Buffer (5x) **TGR BioSciences** Chemwatch Hazard Alert Code: 2 Issue Date: **07/12/2016**Print Date: **11/01/2017**L.GHS.USA.EN Chemwatch: **5233-14** Version No: **2.1.1.1** Safety Data Sheet according to OSHA HazCom Standard (2012) requirements # **SECTION 1 IDENTIFICATION** #### **Product Identifier** | Product name | AlphaScreen SureFire Lysis Buffer (5x) | |-------------------------------|--| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use # Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | TGR BioSciences | |-------------------------|---| | Address | 31 Dalgleish St SA Thebarton 5031 Australia | | Telephone | 61 8 8354 6180 | | Fax | 61 8 8354 6188 | | Website | www.tgrbio.com | | Email | info@tgrbio.com | # Emergency phone number | Association / Organisation |
CHEMTREC/PerkinElmer | |-----------------------------------|----------------------| | Emergency telephone numbers | +1 703-527-3887 | | Other emergency telephone numbers | +31 50 5445971 | # **SECTION 2 HAZARD(S) IDENTIFICATION** # Classification of the substance or mixture # NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 # Label elements GHS label elements SIGNAL WORD WARNING # Hazard statement(s) | H302 | Harmful if swallowed. | |------|--| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Chemwatch: 5233-14 Page 2 of 14 Version No: 2.1.1.1 # AlphaScreen SureFire Lysis Buffer (5x) Issue Date: 07/12/2016 Print Date: 11/01/2017 # Hazard(s) not otherwise specified Not Applicable # Precautionary statement(s) Prevention | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | |------|--| | P261 | Avoid breathing mist/vapours/spray. | | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | # Precautionary statement(s) Response | P362 | te off contaminated clothing and wash before reuse. | | | | | |----------------|--|--|--|--|--| | P302+P352 | SKIN: Wash with plenty of soap and water. | | | | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | | | P301+P312 | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | | | | | P330 | Rinse mouth. | | | | | # Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | | | | |------------|-----------|--|--|--|--| | 7647-14-5 | <=5 | sodium chloride | | | | | 7447-40-7 | <=2.5 | potassium chloride | | | | | 7782-85-6 | <=2.5 | sodium phosphate, dibasic, heptahydrate | | | | | 7778-77-0 | <=2.5 | potassium phosphate, monobasic | | | | | 7758-16-9 | <=2.5 | sodium acid pyrophosphate | | | | | 7681-49-4 | <=2.5 | sodium fluoride | | | | | 13721-39-6 | <=2.5 | sodium orthovanadate | | | | | 9002-93-1 | <=2.5 | p-tert-octylphenol ethoxylate | | | | | 55965-84-9 | <=0.5 | isothiazolinones, mixed | | | | | | balance | Ingredients determined not to be hazardous | | | | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. # **SECTION 4 FIRST-AID MEASURES** | Description of first aid me | asures | |-----------------------------|--| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | ► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. ► For advice, contact a Poisons Information Centre or a doctor. ► Urgent hospital treatment is likely to be needed. ► In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's | Chemwatch: 5233-14 Page 3 of 14 Issue Date: 07/12/2016 Version No: 2.1.1.1 # AlphaScreen SureFire Lysis Buffer (5x) Print Date: 11/01/2017 - condition - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise ▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. #### Most important symptoms and effects, both acute and delayed #### Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred. - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - ▶ Treatment should take into consideration both anionic and cation portion of the molecule. - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored. BAL has no apparent therapeutic benefit in vanadium poisoning but edetate calcium disodium and disodium catechol disulfonate are effective antidotes in animals. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Sampling Time Comments Vanadium in urine End of shift at end of workweek 50 ug/g creatinine SQ SQ: Semi-quantitative determinant - interpretation may be ambiguous; should be used as a screening test or confirmatory test. Treat symptomatically # **SECTION 5 FIRE-FIGHTING MEASURES** # Extinguishing media - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Special protective equipment and precautions for fire-fighters ## ▶ Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. Fire Fighting ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire ▶ Equipment should be thoroughly decontaminated after use Non combustible. ► Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposition may produce toxic fumes of: carbon dioxide (CO2) Fire/Explosion Hazard hydrogen chloride phosgene hydrogen fluoride other pyrolysis products typical of burning organic material. # **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective
equipment and emergency procedures nitrogen oxides (NOx) See section 8 Chemwatch: 5233-14 Page 4 of 14 Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Lysis Buffer (5x) # **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up #### ► Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Minor Spills ▶ Contain and absorb spill with sand, earth, inert material or vermiculite. ▶ Place in a suitable, labelled container for waste disposal. ▶ Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. ▶ The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCI). Glutathione has also been used to inactivate the isothiazolinones. **Major Spills** ▶ Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. • If contamination of drains or waterways occurs, advise emergency services. ▶ After clean up operations, decontaminate and launder all protective clothing ▶ and equipment before storing and re-using. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** ## Precautions for safe handling | - Todautiono for ouro nuna | 9 | |----------------------------|--| | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | # Conditions for safe storage, including any incompatibilities | Conditions for safe storage, including any incompanionities | | | | | |---|---|--|--|--| | Suitable container | Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | | | | | Storage incompatibility | Avoid reaction with oxidising agents | | | | | | | | | | # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** # **Control parameters** # OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | | |---|--------------------|--------------------------------|--------------|------------------|------------------|---|--| | US OSHA Permissible
Exposure Levels (PELs) -
Table Z1 | sodium
fluoride | Fluorides | 2.5
mg/m3 | Not
Available | Not
Available | as F) | | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z2 | sodium
fluoride | Fluoride as dust | 2.5
mg/m3 | Not
Available | Not
Available | (Z37.28–1969) | | | US ACGIH Threshold Limit
Values (TLV) | sodium
fluoride | Fluorides, as F | 2.5
mg/m3 | Not
Available | Not
Available | TLV® Basis: Bone dam; fluorosis; BEI | | | US NIOSH Recommended
Exposure Limits (RELs) | sodium
fluoride | Floridine, Sodium monofluoride | 2.5
mg/m3 | Not
Available | Not
Available | [*Note: The REL also applies to other inorganic, solid fluorides (as F).] | | # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--------------------|---|-----------|----------|-----------| | sodium chloride | Chloride; (Chloride(1-); Chloride ions) | 0.5 ppm | 2 ppm | 20 ppm | | potassium chloride | Potassium chloride | 7.8 mg/m3 | 86 mg/m3 | 510 mg/m3 | Chemwatch: **5233-14** Page **5** of **14** Issue Date: **07/12/2016**Version No: **2.1.1.1** Print Date: **11/01/2017** # AlphaScreen SureFire Lysis Buffer (5x) | potassium phosphate,
monobasic | Potassium phosphate, monobasic | 9.6 mg/m3 | 110 mg/m3 | 630 mg/m3 | |-----------------------------------|--|-------------|------------|-------------| | sodium acid pyrophosphate | Sodium polyphosphate | 9.2 mg/m3 | 100 mg/m3 | 600 mg/m3 | | sodium acid pyrophosphate | Sodium hydrogen pyrophosphate | 4.7 mg/m3 | 52 mg/m3 | 320 mg/m3 | | sodium acid pyrophosphate | Sodium pyrophosphate, di- | 4.3 mg/m3 | 48 mg/m3 | 290 mg/m3 | | sodium fluoride | Sodium fluoride | 17 mg/m3 | 90 mg/m3 | 1,100 mg/m3 | | sodium orthovanadate | Sodium orthovanadate | 0.016 mg/m3 | 0.18 mg/m3 | 130 mg/m3 | | p-tert-octylphenol ethoxylate | Triton X-100; (Poly(oxyethylene)-p-tert-octylphenyl ether) | 11 mg/m3 | 130 mg/m3 | 750 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | sodium chloride | Not Available | Not Available | | potassium chloride | Not Available | Not Available | | sodium phosphate, dibasic,
heptahydrate | Not Available | Not Available | | potassium phosphate,
monobasic | Not Available | Not Available | | sodium acid pyrophosphate | Not Available | Not Available | | sodium fluoride | 500 mg/m3 | 250 mg/m3 | | sodium orthovanadate | Not Available | Not Available | | p-tert-octylphenol ethoxylate | Not Available | Not Available | | isothiazolinones, mixed | Not Available | Not Available | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer
transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection #### reisonai protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed Chemwatch: 5233-14 Page 6 of 14 Issue Date: 07/12/2016 Version No: 2.1.1.1 ## AlphaScreen SureFire Lysis Buffer (5x) Print Date: 11/01/2017 ▶ at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity #### Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Butyl rubber gloves - ► Nitrile rubber gloves See Other protection below # **Body protection** Other protection - Overalls - P.V.C. apron - ▶ Barrier cream. - Skin cleansing cream. - ▶ Eye wash unit # Thermal hazards Not Available # Recommended material(s) # GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: AlphaScreen SureFire Lysis Buffer (5x) | Material | СРІ | |------------------|----------| | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE | С | | PVC | С | | ##sodium | fluoride | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. # Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter: the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class
1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate Chemwatch: 5233-14 Page **7** of **14** Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Lysis Buffer (5x) Information on basic physical and chemical properties | Appearance | Liquid; mixes with water. | | | |--|---------------------------|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour
| Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** | Inhaled | The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the | |--------------|--| | | individual. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious | | Ingestion | damage to the health of the individual. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to bistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids. | | Chronic | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Vanadium compounds are considered to have variable toxicity. Vanadium compounds act chiefly as an irritant to the conjunctivae and respiratory tract. Acute and | Chemwatch: **5233-14** Page **8** of **14** #### AlphaScreen SureFire Lysis Buffer (5x) Issue Date: **07/12/2016**Print Date: **11/01/2017** chronic exposure can give rise to conjunctivitis, rhinitis, reversible irritation of the respiratory tract, and to bronchitis, bronchospasms, and asthma-like diseases in more severe cases. Industrial exposure are mostly acute, seldom chronic. (Sax, Dangerous Properties of Industrial Materials, eighth edition). Vanadium is thought to be an essential trace element with the required level in human nutrition thought to be very low. Feeding trials in humans conducted over 45-94 days (1575-8375 mg of ammonium vanadyl tartrate) produced gastrointestinal distress but no changes in clinical chemistry. Ingestion of 50 mg/day resulted in transient green discolouration of the tongue. Amongst workers in a vanadium refinery exposed at levels of up to 12 mg/m3 cases of respiratory irritation and chronic bronchitis have been described. Emphysema and intoxication was found in boiler cleaners (vanadium is found in soot generated in oil-burning facilities) where vanadium exposures ranged from 30-104 mg/m3. Vanadium exposed workers complain of significantly more wheezing than their matched controls although no differences appear in chest radiography, forced vital capacity (FCV) or FEV1 in workers exposed at levels of 0.1 to 3.9 mg/m3. The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones. The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater
potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*: ► The strongest sensitisers are the chlorinated isothiazolinones. Version No: 2.1.1.1 - ▶ There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. - ▶ There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones. - ▶ Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones. - ▶ By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced. - ▶ Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons. - Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available. * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimuriumstrains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | AlphaScreen SureFire Lysis | TOXICITY | IRRITATION | |--|---|------------------------------------| | Buffer (5x) | Not Available | Not Available | | | TOXICITY | IRRITATION | | en Permantanta | Dermal (rabbit) LD50: >10000 mg/kg ^[1] | Eye (rabbit): 10 mg - moderate | | sodium chloride | Oral (rat) LD50: 3000 mg/kg ^[2] | Eye (rabbit):100 mg/24h - moderate | | | | Skin (rabbit): 500 mg/24h - mild | | | тохісіту | IRRITATION | | potassium chloride | Oral (rat) LD50: 2600 mg/kg ^[2] | Eye (rabbit): 500 mg/24h - mild | | | TOXICITY | IRRITATION | | sodium phosphate, dibasic,
heptahydrate | Oral (rat) LD50: 12930 mg/kg ^[2] | Eye (rabbit): 500 mg/24h - mild | | nopunyarate | | Skin (rabbit): 500 mg/24h - mild | | | TOXICITY | IRRITATION | | potassium phosphate,
monobasic | dermal (rat) LD50: >2000 mg/kg ^[1] | Not Available | | memedadie | Oral (rat) LD50: 7.4 gm ^[1] | | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 16.0/110.0 | | | Oral (rat) LD50: >300-<2000 mg/kg ^[1] | Eye (rabbit): 66.5/110 SEVERE | | sodium acid pyrophosphate | | moderately irritating | | | | practically non-irritating | | | | Skin (rabbit): 0.0/8.0 | | | | Skin (rabbit): 0.7/8.0 - slight | | | TOXICITY | IRRITATION | | sodium fluoride | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 20 mg/24h-moderate | | | Oral (rat) LD50: >25-<2000 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | sodium orthovanadate | Oral (rat) LD50: 330 mg/kg ^[2] | Not Available | Chemwatch: 5233-14 Page 9 of 14 Issue Date: 07/12/2016 | Chemwatch: 5233-14 | Page 9 or 14 | | Issue Date: 0//12/2016 | |--|--|---|------------------------| | /ersion No: 2.1.1.1 | AlphaScreen SureFire Lysis Buf | fer (5x) | Print Date: 11/01/2017 | | | | | | | | | | | | | TOXICITY | IRRITATION | | | p-tert-octylphenol | Oral (rat) LD50: 1800 mg/kg ^[2] | Eye (rabbit): 1 mg - moderate | | | ethoxylate | Ofai (rat) LD30. Tool Hig/kg | | | | | | Skin (human): 2 mg/3d -I - mild | | | | TOXICITY | IRRITATION | | | isothiazolinones, mixed | Oral (rat) LD50: 53 mg/kg ^[2] | Not Available | | | | Oral (rat) 2500. 00 mg/kg | i | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. | * Value obtained from manufacturer's SDS. Unless otherw | vise specified data | | | extracted from RTECS - Register of Toxic Effect of chemical Substances | | <u> </u> | | | | | | | SODIUM PHOSPHATE, | for anhadron material | | | | DIBASIC, HEPTAHYDRATE | for anhydrous material | | | | POTASSIUM PHOSPHATE, | No data of toxicological significance identified in literature search. | | | | MONOBASIC | · · · | | | | SODIUM ACID PYROPHOSPHATE | No birth defects were reported in mice, hamsters, or rabbits given sodium acid standard tests using animals or bacterial and yeast cells | pyrophosphate during pregnancy. No adverse genetic effec | ts were reported in | | THOMOTHAL | The substance is classified by IARC as Group 3: | | | | SODIUM FLUORIDE | NOT classifiable as to its carcinogenicity to humans. | | | | | Evidence of carcinogenicity may be inadequate or limited in animal testing. | | | | | Octoxynols: | a function in cognetics either as surfactants emulaifuing as | ronto curfoctanto | | | Octoxynols of various chain lengths as well as octoxynol salts and organic acid
cleansing agents, surfactant-solubilizing agents, or surfactants-hydrotropes in a | | | | | 25%, with most less than 5.0%. The octoxynols are chemically similar to nonoxy | nols Long-chain nonoxynols (9 and above) were considere | ed safe as used, | | | whereas short-chain nonoxynols (8 and below) were considered safe as used in rinse-off products and safe at concentrations less than 5% in leave-on | | | | | formulations. Acute exposure of hamsters to Octoxynol-9 by bronchopulmonary lavage produced pneumonia, pulmonary edema, and intra-alveolar hemorrhage. Octoxynol-9 at doses over 1 g/kg was toxic in rats and in mice in acute oral toxicity studies. No significant effects were noted in short-term oral studies of | | | | | Octoxynol-9 in rats, in subchronic oral studies of Octoxynol-40 in rats and dogs
Octoxynol-9 in rats and mice was around 100 mg/kg. In skin irritation studies, or | | | | | ocular irritants in one rabbit study, but in others there was ocular irritation. No in | | · | | | intraperitoneal injection of Octoxynol-9 followed by subcutaneous immunization cell-mediated immune responses, or autoimmune response in mice. In the Amer | | | | | was Octoxynol-9 clastogenic. Results for Octoxynol-9 were negative in the follow | | | | | phosphoribosyl transferase mutation assay, malignant transformation assay, DN | | | | | mutation assay. Ethoxylated alkylphenols are generally considered to be estroge
levels of rats to Octoxynol-9 failed to induce any malformations by category (ext | · | | | | from controls at statistically significant level. An increased incidence of a vestig | ial thoracic rib was observed in all dose groups. Octoxynol- | -9 also did not | | | induce developmental toxicity (number of viable litters, live-born per litter, perce
pathogen-free CD-1 mice dosed daily by gavage on gestation days 6 through 1; | | | | | Octoxynol-40 in the diet daily for 3 months; however, in an in vitro test, Octoxyno | · · · · · · · · · · · · · · · · · · · | | | | who used Nonoxynol-9 or Octoxynol-9 as spermicides, but who did become pre | | | | | human skin irritation study, formulations containing 2.0% Octoxynol-9 were classingle-insult, occlusive patch test. Octoxynol-9 (1.0%) was classified as a nonin | , | • | | | The skin sensitization potential of Octoxynols-1, -3, -5, -9, and -13 was evaluate | • • | • | | | results were negative. No sensitization was observed in the following studies: 8. Octoxynol-9 in 206 subjects. Concerns about even trace levels of 1,4-dioxane, et | | • | | | Concerns about the ocular irritancy of short-chain octoxynols led to a recommen | dation that they should not be used in products that will be u | used in the area | | | surrounding the eyes. A limitation on the use concentration for short-chain octoxy
of octoxynols and the recognition that the short-chain octoxynols could be absort | | • | | | available data, it was concluded that long-chain octoxynols (9 and above) are sa | • | | | P-TERT-OCTYLPHENOL | rinse-off products and safe at concentrations less than 5% in leave-on formulati | ons. | | | ETHOXYLATE | International Journal of Toxicology Vol 23 pp 59-111 Jan 2004 Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are h | ighly susceptible towards air oxidation as the ether oxygens | s will stabilize | | | intermediary radicals involved. Investigations of a chemically well-defined alcoh | ol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, | showed that | | | polyethers form complex mixtures of
oxidation products when exposed to air. Sensitization studies in quinea pigs revealed that the pure nonoxidized surfacta | nt itself is nonsensitizing but that many of the investigated o | oxidation products | | | Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable | | | | | enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymphydroperoxides was indicated by the detection of their corresponding aldehydes | • | ormation of other | | | On the basis of the lower irritancy, nonionic surfactants are often preferred to io | | bility towards | | | autoxidation also increases the irritation. Because of their irritating effect, it is | , | • | | | Human beings have regular contact with alcohol ethoxylates through a variety or
cleaning products. Exposure to these chemicals can occur through ingestion, in | | | | | volumes well above a reasonable intake level would have to occur to produce an | y toxic response. Moreover, no fatal case of poisoning with a | alcohol ethoxylates | | | has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity. | | | | | Clinical animal studies indicate these chemicals may produce gastrointestinal i | rritation such as ulcerations of the stomach, pilo-erection, c | diarrhea, and | | lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes | | | d eyes of rabbits and | rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products $are \ sensitizers. \ Two \ hydroperoxides \ were \ identified in the \ oxidation \ mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol \) \ was \ stable$ enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 $hydroperoxides\ was\ indicated\ by\ the\ detection\ of\ their\ corresponding\ aldehydes\ in\ the\ oxidation\ mixture\ .$ Chemwatch: 5233-14 Page 10 of 14 Issue Date: 07/12/2016 Version No: 2.1.1.1 # AlphaScreen SureFire Lysis Buffer (5x) Print Date: 11/01/2017 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) . AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2).Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations. AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. #### ISOTHIAZOLINONES. MIXED The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search. **SODIUM CHLORIDE &** SODIUM PHOSPHATE, DIBASIC, HEPTAHYDRATE & SODIUM FLUORIDE & ISOTHIAZOLINONES, MIXED Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of
exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. SODIUM CHLORIDE & SODIUM FLUORIDE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. **SODIUM CHLORIDE &** ISOTHIAZOLINONES, MIXED The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis POTASSIUM CHLORIDE & ISOTHIAZOLINONES, The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | Acute Toxicity | * | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification ✓ – Data required to make classification available Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** # Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------|----------|--------------------|-------------------------------|-------------|--------| | sodium chloride | LC50 | 96 | Fish | 620.199mg/L | 3 | | sodium chloride | EC50 | 48 | Crustacea | 402.6mg/L | 4 | | sodium chloride | EC50 | 96 | Algae or other aquatic plants | 2430mg/L | 4 | | sodium chloride | EC50 | 384 | Crustacea | 140.582mg/L | 3 | Issue Date: 07/12/2016 Chemwatch: 5233-14 Page 11 of 14 Version No: 2.1.1.1 Print Date: 11/01/2017 # AlphaScreen SureFire Lysis Buffer (5x) | sodium chloride | NOEC | 6 | Fish | 0.001mg/L | 4 | |----------------------------------|--------------------------|-----|---|-------------|---| | potassium chloride | LC50 | 96 | Fish | 29.8000mg/L | 4 | | potassium chloride | EC50 | 48 | Crustacea | 83mg/L | 4 | | potassium chloride | EC50 | 96 | Algae or other aquatic plants | 1337mg/L | 4 | | potassium chloride | EC50 | 24 | Crustacea | 7.35mg/L | 4 | | potassium chloride | NOEC | 48 | Crustacea | 240.45mg/L | 4 | | sodium fluoride | LC50 | 96 | Fish | 51mg/L | 2 | | sodium fluoride | EC50 | 48 | Crustacea | 58mg/L | 4 | | sodium fluoride | EC50 | 96 | Algae or other aquatic plants | 181mg/L | 1 | | sodium fluoride | BCF | 240 | Fish | 5mg/L | 4 | | sodium fluoride | EC50 | 96 | Crustacea | 23.3mg/L | 1 | | sodium fluoride | NOEC | 504 | Fish | 4mg/L | 2 | | sodium orthovanadate | LC50 | 96 | Fish | 13.261mg/L | 3 | | sodium orthovanadate | EC50 | 96 | Algae or other aquatic plants | 35.721mg/L | 3 | | sodium orthovanadate | EC50 | 384 | Crustacea | 3.198mg/L | 3 | | p-tert-octylphenol
ethoxylate | LC50 | 96 | Fish | 0.347mg/L | 3 | | p-tert-octylphenol
ethoxylate | EC50 | 96 | Algae or other aquatic plants | 0.366mg/L | 3 | | p-tert-octylphenol
ethoxylate | BCFD | 336 | Algae or other aquatic plants | 0.1mg/L | 4 | | p-tert-octylphenol
ethoxylate | EC50 | 384 | Crustacea | 0.089mg/L | 3 | | Legend: | Aquatic Toxicity Data (E | | gistered Substances - Ecotoxicological Informuse - Aquatic Toxicity Data 5. ECETOC Aquatiata 8. Vendor Data | | | $\label{thm:local_equation} \mbox{Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.}$ Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------------------|-------------------------|------------------| | sodium chloride | LOW | LOW | | potassium chloride | HIGH | HIGH | | sodium fluoride | LOW | LOW | | sodium orthovanadate | HIGH | HIGH | | p-tert-octylphenol ethoxylate | HIGH | HIGH | # Bioaccumulative potential | Ingredient | Bioaccumulation | |-------------------------------|------------------------| | sodium chloride | LOW (LogKOW = 0.5392) | | potassium chloride | LOW (LogKOW = -0.4608) | | sodium fluoride | LOW (BCF = 6.4) | | sodium orthovanadate | LOW (LogKOW = 2.229) | | p-tert-octylphenol ethoxylate | HIGH (LogKOW = 4.863) | # Mobility in soil | Ingredient | Mobility | |-------------------------------|-------------------| | sodium chloride | LOW (KOC = 14.3) | | potassium chloride | LOW (KOC = 14.3) | | sodium fluoride | LOW (KOC = 14.3) | | sodium orthovanadate | LOW (KOC = 48.64) | | p-tert-octylphenol ethoxylate | LOW (KOC = 699.2) | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. - Otherwise: - F If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then Chemwatch: 5233-14 Page 12 of 14 Issue Date: 07/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Lysis Buffer (5x) Print Date: 11/01/2017 - puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recyclina - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter dra - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### SECTION 14 TRANSPORT INFORMATION #### Labels Required Marine Pollutant Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture #### SODIUM CHLORIDE(7647-14-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory # POTASSIUM CHLORIDE(7447-40-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## SODIUM PHOSPHATE, DIBASIC, HEPTAHYDRATE(7782-85-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - Massachusetts - Right To Know Listed Chemicals US - Pennsylvania - Hazardous Substance List US CWA (Clean Water Act) - List of Hazardous Substances US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### POTASSIUM PHOSPHATE, MONOBASIC(7778-77-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory # SODIUM ACID PYROPHOSPHATE(7758-16-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ### SODIUM FLUORIDE(7681-49-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs US - Alaska Limits for Air Contaminants US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - California Permissible Exposure Limits for Chemical Contaminants US - Hawaii Air Contaminant Limits (CRELs) US - Idaho - Limits for Air Contaminants US - Massachusetts - Right To Know Listed Chemicals US - Michigan Exposure Limits for Air Contaminants US - Minnesota Permissible Exposure Limits (PELs) US - Oregon Permissible Exposure Limits (Z-1) US - Oregon Permissible Exposure Limits
(Z-2) US - Pennsylvania - Hazardous Substance List US - Rhode Island Hazardous Substance List US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants ### US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants US - Washington Permissible exposure limits of air contaminants US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift US ACGIH Threshold Limit Values (TLV) US ACGIH Threshold Limit Values (TLV) - Carcinogens US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US CWA (Clean Water Act) - List of Hazardous Substances US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Levels (PELs) - Table Z1 US OSHA Permissible Exposure Levels (PELs) - Table Z2 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory # SODIUM ORTHOVANADATE(13721-39-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US EPCRA Section 313 Chemical List Version No: 2.1.1.1 #### AlphaScreen SureFire Lysis Buffer (5x) Print Date: 11/01/2017 #### P-TERT-OCTYLPHENOL ETHOXYLATE(9002-93-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS #### **Federal Regulations** #### Superfund Amendments and Reauthorization Act of 1986 (SARA) #### SECTION 311/312 HAZARD CATEGORIES | Immediate (acute) health hazard | Yes | |---------------------------------|-----| | Delayed (chronic) health hazard | No | | Fire hazard | No | | Pressure hazard | No | | Reactivity hazard | No | #### US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4) | Name | Reportable Quantity in Pounds (lb) | Reportable Quantity in kg | |---------------------------|------------------------------------|---------------------------| | Sodium phosphate, dibasic | 5000 | 2270 | | Sodium fluoride | 1000 | 454 | #### State Regulations ### US. CALIFORNIA PROPOSITION 65 None Reported | National Inventory | Status | | |----------------------------------|--|--| | Australia - AICS | N (isothiazolinones, mixed) | | | Canada - DSL | Υ | | | Canada - NDSL | N (sodium orthovanadate; sodium phosphate, dibasic, heptahydrate; potassium chloride; potassium phosphate, monobasic; sodium acid pyrophosphate; isothiazolinones, mixed; sodium fluoride; p-tert-octylphenol ethoxylate; sodium chloride) | | | China - IECSC | | | | Europe - EINEC / ELINCS /
NLP | N (isothiazolinones, mixed; p-tert-octylphenol ethoxylate) | | | Japan - ENCS | N (sodium acid pyrophosphate; p-tert-octylphenol ethoxylate) | | | Korea - KECI | Υ | | | New Zealand - NZIoC | Υ | | | Philippines - PICCS | N (sodium orthovanadate) | | | USA - TSCA | N (isothiazolinones, mixed) | | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | ### **SECTION 16 OTHER INFORMATION** #### Other information ### Ingredients with multiple cas numbers | Name | CAS No | |---------------------------|-----------------------------------| | sodium chloride | 7647-14-5, 14762-51-7, 16887-00-6 | | sodium acid pyrophosphate | 7758-16-9, 10101-84-5, 68915-31-1 | | isothiazolinones, mixed | 55965-84-9, 96118-96-6 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term Exposure Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit, IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level Chemwatch: 5233-14 Page **14** of **14** Issue Date: 07/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 ### AlphaScreen SureFire Lysis Buffer (5x) TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. ## **Control Lysates SureFire** ### **TGR BioSciences** Chemwatch: **5233-13** Version No: **3.1.1.1** Safety Data Sheet according to OSHA HazCom Standard (2012) requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **12/12/2016** Print Date: **11/01/2017** L.GHS.USA.EN ### **SECTION 1 IDENTIFICATION** #### **Product Identifier** | Product name | Control Lysates SureFire | |-------------------------------|--------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use ### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | TGR BioSciences | |-------------------------|---| | Address | 31 Dalgleish St SA Thebarton 5031 Australia | | Telephone | 61 8 8354 6180 | | Fax | 61 8 8354 6188 | | Website | www.tgrbio.com | | Email | info@tgrbio.com | #### Emergency phone number | Association / Organisation | CHEMTREC/PerkinElmer | |-----------------------------------|----------------------| | Emergency telephone numbers | +1 703-527-3887 | | Other emergency telephone numbers | +31 50 5445971 | #### **SECTION 2 HAZARD(S) IDENTIFICATION** ### Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1 ### Label elements GHS label elements SIGNAL WORD WARNING ### Hazard statement(s) | H315 | Causes skin irritation. | |------|--------------------------------------| | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | ### Hazard(s) not otherwise specified Not Applicable Chemwatch: 5233-13 Page 2 of 13 Issue Date: 12/12/2016 Version No: 3.1.1.1 Print Date: 11/01/2017 ### **Control Lysates SureFire** ### Precautionary statement(s) Prevention | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | |------|---|--| | P261 | Avoid breathing mist/vapours/spray. | | | P272 | P272 Contaminated work clothing should not be allowed out of the workplace. | | ### Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |---|--|--| | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P337+P313 If eye irritation persists: Get medical advice/attention. | | | #### Precautionary statement(s) Storage Not Applicable ### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. ### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--| | 7647-14-5 | <=2.5 | sodium chloride | | 7447-40-7 | <=2.5 | potassium chloride | | 7782-85-6 | <=2.5 | sodium phosphate, dibasic, heptahydrate | | 7778-77-0 | <=2.5 | potassium phosphate, monobasic | | 7758-16-9 | <=0.5 | sodium acid pyrophosphate | | 7681-49-4 | <=0.1 | sodium fluoride | | 13721-39-6 | <=0.1 | sodium orthovanadate | | 9002-93-1 | <=0.5 | p-tert-octylphenol ethoxylate | | 55965-84-9 | <=0.1 | isothiazolinones, mixed | | 57-50-1 | <=5 | sucrose | | Not Available | <=1 | Cell
extract (protein, not exceeding) | | | balance | Ingredients determined not to be hazardous | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. #### **SECTION 4 FIRST-AID MEASURES** ### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | ### Most important symptoms and effects, both acute and delayed See Section 11 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. ### **SECTION 5 FIRE-FIGHTING MEASURES** ### Extinguishing media Chemwatch: 5233-13 Page 3 of 13 Issue Date: 12/12/2016 Version No: 3.1.1.1 Print Date: 11/01/2017 #### **Control Lysates SureFire** - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ► Expansion or decomposition on heating may lead to violent rupture of containers. ### Special protective equipment and precautions for fire-fighters #### ▶ Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. ▶ Prevent, by any means available, spillage from entering drains or water courses. ▶ Use fire fighting procedures suitable for surrounding area. Fire Fighting ▶ DO NOT approach containers suspected to be hot. ▶ Cool fire exposed containers with water spray from a protected location. ▶ Not considered to be a significant fire risk. - ▶ If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. - ▶ Non combustible. #### Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposition may produce toxic fumes of: carbon dioxide (CO2) Fire/Explosion Hazard hydrogen chloride phosgene hydrogen fluoride nitrogen oxides (NOx) other pyrolysis products typical of burning organic material #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|--| | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling ### ▶ DO NOT allow clothing wet with material to stay in contact with skin - ▶ Avoid all personal contact, including inhalation - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - ► Avoid contact with moisture #### Avoid contact with incompatible materials. Safe handling - ▶ When handling, **DO NOT** eat, drink or smoke - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. Chemwatch: 5233-13 Page 4 of 13 Issue Date: 12/12/2016 Version No: 3.1.1.1 Print Date: 11/01/2017 ### **Control Lysates SureFire** ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. • Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - ► Store in original containers. - ► Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. Other information - ▶ Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities Suitable container - ► Polyethylene or polypropylene container. - ▶ Packing as recommended by manufacturer. - ▶ Check all containers are clearly labelled and free from leaks. Storage incompatibility Avoid reaction with oxidising agents ### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|--------------------|---|-------------------------------|------------------|------------------|---| | US OSHA Permissible
Exposure Levels (PELs) -
Table Z1 | sodium
fluoride | Fluorides | 2.5 mg/m3 | Not
Available | Not
Available | as F) | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z2 | sodium
fluoride | Fluoride as dust | 2.5 mg/m3 | Not
Available | Not
Available | (Z37.28–1969) | | US ACGIH Threshold Limit
Values (TLV) | sodium
fluoride | Fluorides, as F | 2.5 mg/m3 | Not
Available | Not
Available | TLV® Basis: Bone dam; fluorosis;
BEI | | US NIOSH Recommended Exposure Limits (RELs) | sodium
fluoride | Floridine, Sodium monofluoride | 2.5 mg/m3 | Not
Available | Not
Available | [*Note: The REL also applies to other inorganic, solid fluorides (as F).] | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z1 | sucrose | Sucrose / Sucrose - Respirable fraction | 15 mg/m3 / 5
mg/m3 | Not
Available | Not
Available | Total dust | | US ACGIH Threshold Limit
Values (TLV) | sucrose | Sucrose | 10 mg/m3 | Not
Available | Not
Available | TLV® Basis: Dental erosion | | US NIOSH Recommended Exposure Limits (RELs) | sucrose | Beet sugar, Cane sugar, Confectioner's sugar,
Granulated sugar, Rock candy, Saccarose, Sugar,
Table sugar | 10 (total), 5
(resp) mg/m3 | Not
Available | Not
Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|--|-------------|------------|-------------| | sodium chloride | Chloride; (Chloride(1-); Chloride ions) | 0.5 ppm | 2 ppm | 20 ppm | | potassium chloride | Potassium chloride | 7.8 mg/m3 | 86 mg/m3 | 510 mg/m3 | | potassium phosphate,
monobasic | Potassium phosphate, monobasic | 9.6 mg/m3 | 110 mg/m3 | 630 mg/m3 | | sodium acid
pyrophosphate | Sodium polyphosphate | 9.2 mg/m3 | 100 mg/m3 | 600 mg/m3 | | sodium acid pyrophosphate | Sodium hydrogen pyrophosphate | 4.7 mg/m3 | 52 mg/m3 | 320 mg/m3 | | sodium acid pyrophosphate | Sodium pyrophosphate, di- | 4.3 mg/m3 | 48 mg/m3 | 290 mg/m3 | | sodium fluoride | Sodium fluoride | 17 mg/m3 | 90 mg/m3 | 1,100 mg/m3 | | sodium orthovanadate | Sodium orthovanadate | 0.016 mg/m3 | 0.18 mg/m3 | 130 mg/m3 | | p-tert-octylphenol ethoxylate | Triton X-100; (Poly(oxyethylene)-p-tert-octylphenyl ether) | 11 mg/m3 | 130 mg/m3 | 750 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | sodium chloride | Not Available | Not Available | | potassium chloride | Not Available | Not Available | | sodium phosphate, dibasic,
heptahydrate | Not Available | Not Available | | potassium phosphate,
monobasic | Not Available | Not Available | | sodium acid pyrophosphate | Not Available | Not Available | | sodium fluoride | 500 mg/m3 | 250 mg/m3 | | sodium orthovanadate | Not Available | Not Available | | p-tert-octylphenol ethoxylate | Not Available | Not Available | | isothiazolinones, mixed | Not Available | Not Available | | sucrose | Not Available | Not Available | | Cell extract (protein, not exceeding) | Not Available | Not Available | Chemwatch: 5233-13 Page 5 of 13 Version No: 3.1.1.1 #### **Control Lysates SureFire** Issue Date: 12/12/2016 Print Date: 11/01/2017 #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | | | aerosols, furnes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid furnes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection - Safety glasses with side shields - Chemical goggles ### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below - Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. ### Hands/feet protection Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. ### **Control Lysates SureFire** | | It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. | |------------------
---| | Body protection | See Other protection below | | Other protection | Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. | | Thermal hazards | Not Available | #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\ computer-$ generated selection: Control Lysates SureFire | Material | СРІ | |------------------|----------| | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE | С | | PVC | С | | ##sodium | fluoride | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - #### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class
1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | Liquid; mixes with water. | | | |--|---------------------------|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Version No: 3.1.1.1 Control Lysates SureFire Page **7** of **13** Issue Date: **12/12/2016**Print Date: **11/01/2017** ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | | | |--|--|--|--|--| | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | | | | Skin Contact | direct contact, and/or produces significant inflammation when a
twenty-four hours or more after the end of the exposure period
form of contact dermatitis (nonallergic). The dermatitis is often
blistering (vesiculation), scaling and thickening of the epidermi
(spongiosis) and intracellular oedema of the epidermis.
The material may accentuate any pre-existing dermatitis condi
Open cuts, abraded or irritated skin should not be exposed to t | his material
ns, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the | | | | Eye | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | | Chronic | of producing a positive response in experimental animals. | is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/o ional exposure may produce cumulative health effects involving organs or
biochemical systems. | | | | | TOXICITY | IRRITATION | | | | Control Lysates SureFire | Not Available | Not Available | | | | | TOXICITY | IRRITATION | | | | | Dermal (rabbit) LD50: >10000 mg/kg ^[1] | Eye (rabbit): 10 mg - moderate | | | | sodium chloride | Oral (rat) LD50: 3000 mg/kg ^[2] | Eye (rabbit):100 mg/24h - moderate | | | | | | Skin (rabbit): 500 mg/24h - mild | | | | | TOXICITY | IRRITATION | | | | potassium chloride | Oral (rat) LD50: 2600 mg/kg ^[2] | Eye (rabbit): 500 mg/24h - mild | | | | | TOXICITY | IRRITATION | | | | sodium phosphate, dibasic,
heptahydrate | Oral (rat) LD50: 12930 mg/kg ^[2] | Eye (rabbit): 500 mg/24h - mild | | | | перапучнае | | Skin (rabbit): 500 mg/24h - mild | | | | | TOXICITY | IRRITATION | | | | potassium phosphate, | dermal (rat) LD50: >2000 mg/kg ^[1] | Not Available | | | | monobasic | Oral (rat) LD50: 7.4 gm ^[1] | | | | | | TOXICITY | IRRITATION | | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 16.0/110.0 | | | | | Oral (rat) LD50: >300-<2000 mg/kg ^[1] | Eye (rabbit): 66.5/110 SEVERE | | | | sodium acid pyrophosphate | | moderately irritating | | | | | | practically non-irritating | | | | | | Skin (rabbit): 0.0/8.0 | | | Chemwatch: **5233-13**Version No: **3.1.1.1** # Page 8 of 13 Control Lysates SureFire Issue Date: 12/12/2016 Print Date: 11/01/2017 | TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >25-<2000 mg/kg ^[1] TOXICITY | IRRITATION Eye (rabbit): 20 mg/24h-moderate | |--|---| | Oral (rat) LD50: >25-<2000 mg/kg ^[1] | | | | | | TOXICITY | (BB)=000 | | | IRRITATION | | Oral (rat) LD50: 330 mg/kg ^[2] | Not Available | | TOXICITY | IRRITATION | | Oral (rat) LD50: 1800 mg/kg ^[2] | Eye (rabbit): 1 mg - moderate | | | Skin (human): 2 mg/3d -l - mild | | TOXICITY | IRRITATION | | Oral (rat) LD50: 53 mg/kg ^[2] | Not Available | | TOXICITY | IRRITATION | | Oral (rat) LD50: 29700 mg/kg ^[2] | Not Available | | | s - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data | | . (| TOXICITY Oral (rat) LD50: 1800 mg/kg ^[2] TOXICITY Oral (rat) LD50: 53 mg/kg ^[2] TOXICITY Oral (rat) LD50: 29700 mg/kg ^[2] | | SODIUM PHOSPHATE,
DIBASIC, HEPTAHYDRATE | for anhydrous material | |--|--| | POTASSIUM PHOSPHATE,
MONOBASIC | No data of toxicological significance identified in literature search. | | SODIUM ACID
PYROPHOSPHATE | No birth defects were reported in mice, hamsters, or rabbits given sodium acid pyrophosphate during pregnancy. No adverse genetic effects were reported in standard tests using animals or bacterial and yeast cells | | SODIUM FLUORIDE | The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | #### Octoxynols: Octoxynols of various chain lengths as well as octoxynol salts and organic acids function in cosmetics either as surfactants-emulsifying agents, surfactantscleansing agents, surfactant-solubilizing agents, or surfactants-hydrotropes in a wide variety of cosmetic products at concentrations ranging from 0.0008% to 25%, with most less than 5.0%. The octoxynols are chemically similar to nonoxynols.. Long-chain nonoxynols (9 and above) were considered safe as used, whereas short-chain nonoxynols (8 and below) were considered safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations. Acute exposure of hamsters to Octoxynol-9 by bronchopulmonary lavage produced pneumonia, pulmonary edema, and intra-alveolar hemorrhage. Octoxynol-9 at doses over 1 g/kg was toxic in rats and in mice in acute oral toxicity studies. No significant effects were noted in short-term oral studies of Octoxynol-9 in rats, in subchronic oral studies of Octoxynol-40 in rats and dogs, or in chronic oral studies of Octoxynol-40 in rats. The intraperitoneal LD50 of Octoxynol-9 in rats and mice was around 100 mg/kg. In skin irritation studies, octoxynols ranged from nonirritating to moderately irritating. Octoxynols were not ocular irritants in one rabbit study, but in others there was ocular irritation. No immune system toxicity in CF-1 female mice was noted following the intraperitoneal injection of Octoxynol-9 followed by subcutaneous immunization with sheep red blood cells (SRBCs). Octoxynol-9 produced no humoral and cell-mediated immune responses, or autoimmune response in mice. In the Ames test, Octoxynol-1 was not mutagenic with and without metabolic activation nor was Octoxynol-9 clastogenic. Results for Octoxynol-9 were negative in the following assays: unscheduled DNA synthesis, hypoxanthine guanine phosphoribosyl transferase mutation assay, malignant transformation assay, DNA alkaline unwinding test, and mouse lymphoma thymidine kinase locus forward mutation assay. Ethoxylated alkylphenols are generally considered to be estrogenic in that they mimic the effects of estradiol. Dermal exposure at three dose levels of rats to Octoxynol-9 failed to induce any malformations by category (external, visceral, or skeletal) or by individual anatomical location that were different from controls at statistically significant level. An increased incidence of a vestigial thoracic rib was observed in all dose groups. Octoxynol-9 also did not induce developmental toxicity (number of viable litters, live-born per litter, percentage survival, birth weight per pup, and weight gain per pup) in female specific pathogen-free CD-1 mice dosed daily by gavage on gestation days 6 through 13. No reproductive toxicity was seen in male albino rats which received 5% Octoxynol-40 in the diet daily for 3 months; however, in an in vitro test, Octoxynol-9 (0.24 mg/ml) totally immobilized all human spermatozoa within 20 s. Women who used Nonoxynol-9 or Octoxynol-9 as spermicides, but who did become pregnant, did not have an increase in the overall risk of fetal malformations. In a human skin irritation study, formulations containing 2.0% Octoxynol-9 were classified as moderately irritating and minimally irritating, respectively, in a 24-h single-insult, occlusive patch test. Octoxynol-9 (1.0%) was classified as a nonirritant in a clinical study of nine subjects patch tested for 4 consecutive days. The skin sensitization potential of Octoxynols-1, -3, -5, -9, and -13 was evaluated using 50 subjects. Octoxynol-1 induced sensitization in two subjects; all other results were negative. No sensitization was observed in the following studies: 8.0% Octoxynol-9 in 103 subjects, 0.5% Octoxynol-9 in 102 subjects, and 0.1% Octoxynol-9 in 206 subjects. Concerns about even trace levels of 1,4-dioxane, ethylene oxide, or unreacted C9 led to the recommendation that levels be limited. Concerns about the ocular irritancy of short-chain octoxynols led to a recommendation that they should not be used in products that will be used in the area surrounding the eyes. A limitation on the use concentration for short-chain octoxynols (8 and below) arose from consideration of the skin sensitization potential of octoxynols and the recognition that the short-chain octoxynols could be absorbed into the skin more than the long-chain octoxynols. Overall, based on the available data, it was concluded that long-chain octoxynols (9 and above) are safe as used, whereas short-chain octoxynols (8 and below) are safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations. # P-TERT-OCTYLPHENOL ETHOXYLATE International Journal of Toxicology Vol 23 pp 59-111 Jan 2004 Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in Chemwatch: 5233-13 Page 9 of 13 Issue
Date: 12/12/2016 Version No: 3.1.1.1 #### Control Lysates SureFire Print Date: 11/01/2017 terms of oral and dermal toxicity. Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy, Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens, will, stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in quinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) . AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations. AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. ## ISOTHIAZOLINONES. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search. #### SUCROSE Oral (Human) TDLo: 9.6E-5 mg/kg #### SODIUM CHLORIDE & SODIUM PHOSPHATE. DIBASIC HEPTAHYDRATE & SODIUM FLUORIDE & ISOTHIAZOLINONES, MIXED Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. #### **SODIUM CHLORIDE &** SODIUM FLUORIDE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. ### **SODIUM CHLORIDE &** ISOTHIAZOLINONES. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis #### POTASSIUM CHLORIDE & ISOTHIAZOLINONES. MIXED The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | Acute Toxicity | 0 | Carcinogenicity | 0 | |----------------------------------|----------|------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | 0 | Chemwatch: 5233-13 Page 10 of 13 Issue Date: 12/12/2016 Version No: 3.1.1.1 Print Date: 11/01/2017 ### **Control Lysates SureFire** Respiratory or Skin sensitisation 0 STOT - Repeated Exposure 0 **Aspiration Hazard** 0 Mutagenicity X
– Data available but does not fill the criteria for classification Data required to make classification available Legend: Data Not Available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** ### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------------|----------|--------------------|-------------------------------|------------------|--------| | sodium chloride | LC50 | 96 | Fish | 620.199mg/L | 3 | | sodium chloride | EC50 | 48 | Crustacea | 402.6mg/L | 4 | | sodium chloride | EC50 | 96 | Algae or other aquatic plants | 2430mg/L | 4 | | sodium chloride | EC50 | 384 | Crustacea | 140.582mg/L | 3 | | sodium chloride | NOEC | 6 | Fish | 0.001mg/L | 4 | | potassium chloride | LC50 | 96 | Fish | 29.8000mg/L | 4 | | potassium chloride | EC50 | 48 | Crustacea | 83mg/L | 4 | | potassium chloride | EC50 | 96 | Algae or other aquatic plants | 1337mg/L | 4 | | potassium chloride | EC50 | 24 | Crustacea | 7.35mg/L | 4 | | potassium chloride | NOEC | 48 | Crustacea | 240.45mg/L | 4 | | sodium fluoride | LC50 | 96 | Fish | 51mg/L | 2 | | sodium fluoride | EC50 | 48 | Crustacea | 58mg/L | 4 | | sodium fluoride | EC50 | 96 | Algae or other aquatic plants | 181mg/L | 1 | | sodium fluoride | BCF | 240 | Fish | 5mg/L | 4 | | sodium fluoride | EC50 | 96 | Crustacea | 23.3mg/L | 1 | | sodium fluoride | NOEC | 504 | Fish | 4mg/L | 2 | | sodium orthovanadate | LC50 | 96 | Fish | 13.261mg/L | 3 | | sodium orthovanadate | EC50 | 96 | Algae or other aquatic plants | 35.721mg/L | 3 | | sodium orthovanadate | EC50 | 384 | Crustacea | 3.198mg/L | 3 | | p-tert-octylphenol
ethoxylate | LC50 | 96 | Fish | 0.347mg/L | 3 | | p-tert-octylphenol
ethoxylate | EC50 | 96 | Algae or other aquatic plants | 0.366mg/L | 3 | | p-tert-octylphenol
ethoxylate | BCFD | 336 | Algae or other aquatic plants | 0.1mg/L | 4 | | p-tert-octylphenol
ethoxylate | EC50 | 384 | Crustacea | 0.089mg/L | 3 | | sucrose | LC50 | 96 | Fish | 113.3799mg/L | 3 | | sucrose | EC50 | 96 | Algae or other aquatic plants | 286533.52249mg/L | 3 | | sucrose | EC50 | 384 | Crustacea | 1971.62453mg/L | 3 | DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------------------|-------------------------|------------------| | sodium chloride | LOW | LOW | | potassium chloride | HIGH | HIGH | | sodium fluoride | LOW | LOW | | sodium orthovanadate | HIGH | HIGH | | p-tert-octylphenol ethoxylate | HIGH | HIGH | | sucrose | LOW | LOW | ### Bioaccumulative potential | Ingredient | Bioaccumulation | |-------------------------------|------------------------| | sodium chloride | LOW (LogKOW = 0.5392) | | potassium chloride | LOW (LogKOW = -0.4608) | | sodium fluoride | LOW (BCF = 6.4) | | sodium orthovanadate | LOW (LogKOW = 2.229) | | p-tert-octylphenol ethoxylate | HIGH (LogKOW = 4.863) | Issue Date: 12/12/2016 Print Date: 11/01/2017 #### **Control Lysates SureFire** LOW (LogKOW = -3.7)sucrose #### Mobility in soil | Ingredient | Mobility | |-------------------------------|-------------------| | sodium chloride | LOW (KOC = 14.3) | | potassium chloride | LOW (KOC = 14.3) | | sodium fluoride | LOW (KOC = 14.3) | | sodium orthovanadate | LOW (KOC = 48.64) | | p-tert-octylphenol ethoxylate | LOW (KOC = 699.2) | | sucrose | LOW (KOC = 10) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required Marine Pollutant NO Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** US - Pennsylvania - Hazardous Substance List Safety, health and environmental regulations / legislation specific for the substance or mixture SODIUM CHLORIDE(7647-14-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory POTASSIUM CHLORIDE(7447-40-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory SODIUM PHOSPHATE, DIBASIC, HEPTAHYDRATE(7782-85-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - Massachusetts - Right To Know Listed Chemicals US CWA (Clean Water Act) - List of Hazardous Substances US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory POTASSIUM PHOSPHATE, MONOBASIC(7778-77-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory SODIUM ACID PYROPHOSPHATE(7758-16-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### **Control Lysates SureFire** SODIUM FLUORIDE(7681-49-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS International Agency for Research on Cancer (IARC) - Agents Classified by the IARC US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants Monographs US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air US - Alaska Limits for Air Contaminants Contaminants US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US - Washington Permissible exposure limits of air contaminants US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values (CRELs) US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants US - California Permissible Exposure Limits for Chemical Contaminants US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, US - Hawaii Air Contaminant Limits Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift US ACGIH Threshold Limit Values (TLV) US - Idaho - Limits for Air Contaminants US - Massachusetts - Right To Know Listed Chemicals US ACGIH Threshold Limit Values (TLV) - Carcinogens US - Michigan Exposure Limits for Air Contaminants US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US - Minnesota Permissible Exposure Limits (PELs) US CWA (Clean Water Act) - List of Hazardous Substances US NIOSH Recommended Exposure Limits (RELs) US - Oregon Permissible Exposure Limits (Z-1) US - Oregon Permissible Exposure Limits (Z-2) US OSHA Permissible Exposure Levels (PELs) - Table Z1 US - Pennsylvania - Hazardous Substance List US OSHA Permissible Exposure Levels (PELs) - Table Z2 US - Rhode Island Hazardous Substance List US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants #### SODIUM ORTHOVANADATE(13721-39-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US EPCRA Section 313 Chemical List #### P-TERT-OCTYLPHENOL ETHOXYLATE(9002-93-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable #### SUCROSE(57-50-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS | US - Alaska Limits for Air Contaminants | US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants | |---
---| | US - California Permissible Exposure Limits for Chemical Contaminants | US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants | | US - Hawaii Air Contaminant Limits | US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air | | US - Idaho - Limits for Air Contaminants | Contaminants | | US - Massachusetts - Right To Know Listed Chemicals | US - Washington Permissible exposure limits of air contaminants | | US - Michigan Exposure Limits for Air Contaminants | US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants | | US - Minnesota Permissible Exposure Limits (PELs) | US ACGIH Threshold Limit Values (TLV) | | US - Oregon Permissible Exposure Limits (Z-1) | US ACGIH Threshold Limit Values (TLV) - Carcinogens | | US - Pennsylvania - Hazardous Substance List | US NIOSH Recommended Exposure Limits (RELs) | | US - Rhode Island Hazardous Substance List | US OSHA Permissible Exposure Levels (PELs) - Table Z1 | | | US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory | ### Federal Regulations ### Superfund Amendments and Reauthorization Act of 1986 (SARA) #### SECTION 311/312 HAZARD CATEGORIES | Immediate (acute) health hazard | Yes | |---------------------------------|-----| | Delayed (chronic) health hazard | No | | Fire hazard | No | | Pressure hazard | No | | Reactivity hazard | No | ### US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4) | Name | Reportable Quantity in Pounds (lb) | Reportable Quantity in kg | |---------------------------|------------------------------------|---------------------------| | Sodium phosphate, dibasic | 5000 | 2270 | | Sodium fluoride | 1000 | 454 | #### State Regulations #### US. CALIFORNIA PROPOSITION 65 None Reported | National Inventory | Status | |----------------------------------|---| | Australia - AICS | N (isothiazolinones, mixed) | | Canada - DSL | Υ | | Canada - NDSL | N (sucrose; sodium orthovanadate; sodium phosphate, dibasic, heptahydrate; potassium chloride; potassium phosphate, monobasic; sodium acid pyrophosphate; isothiazolinones, mixed; sodium fluoride; p-tert-octylphenol ethoxylate; sodium chloride) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | N (isothiazolinones, mixed; p-tert-octy/phenol ethoxylate) | | Japan - ENCS | N (sucrose; sodium acid pyrophosphate; p-tert-octylphenol ethoxylate) | | Korea - KECI | Υ | Chemwatch: 5233-13 Page 13 of 13 Issue Date: 12/12/2016 Version No: 3.1.1.1 Print Date: 11/01/2017 ### **Control Lysates SureFire** | New Zealand - NZIoC | Y | |---------------------|---| | Philippines - PICCS | N (sodium orthovanadate) | | USA - TSCA | N (isothiazolinones, mixed) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |---------------------------|-----------------------------------| | sodium chloride | 7647-14-5, 14762-51-7, 16887-00-6 | | sodium acid pyrophosphate | 7758-16-9, 10101-84-5, 68915-31-1 | | isothiazolinones, mixed | 55965-84-9, 96118-96-6 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. ## AlphaScreen SureFire Reaction Buffer **TGR BioSciences** Chemwatch Hazard Alert Code: 2 Issue Date: **08/12/2016** Print Date: **11/01/2017** L.GHS.USA.EN Chemwatch: **5233-15** Version No: **2.1.1.1** Safety Data Sheet according to OSHA HazCom Standard (2012) requirements ### **SECTION 1 IDENTIFICATION** #### **Product Identifier** | Product name | AlphaScreen SureFire Reaction Buffer | |-------------------------------|--------------------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use #### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | TGR BioSciences | |-------------------------|---| | Address | 31 Dalgleish St SA Thebarton 5031 Australia | | Telephone | 61 8 8354 6180 | | Fax | 61 8 8354 6188 | | Website | www.tgrbio.com | | Email | info@tgrbio.com | #### Emergency phone number | Association / Organisation | CHEMTREC/PerkinElmer | |-----------------------------------|----------------------| | Emergency telephone numbers | +1 703-527-3887 | | Other emergency telephone numbers | +31 50 5445971 | #### **SECTION 2 HAZARD(S) IDENTIFICATION** ### Classification of the substance or mixture ### NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 #### Label elements GHS label elements SIGNAL WORD WARNING ### Hazard statement(s) | H315 | Causes skin irritation. | |------|--| | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Chemwatch: 5233-15 Page 2 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 ### AlphaScreen SureFire Reaction Buffer Not Applicable ### Precautionary statement(s) Prevention | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | |------|--|--| | P261 | oid breathing mist/vapours/spray. | | | P273 | void release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | ### Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |----------------|---|--| | P302+P352 | F ON SKIN: Wash with plenty of soap and water. | | | P305+P351+P338 | F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | #### Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--| | 77-86-1 | <0.3 | tris(hydroxymethyl)aminomethane | | 9048-46-8 | <2.5 | albumin | | 9005-64-5 | <0.3 | sorbitan monolaurate, ethoxylated | | 55965-84-9 | <0.5 | isothiazolinones, mixed | | Not Available | <0.001 | Antibodies (not exceeding) | | | balance | Ingredients determined not to be hazardous | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. ### **SECTION 4 FIRST-AID MEASURES** ### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye
injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ## Most important symptoms and effects, both acute and delayed See Section 11 ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. ### **SECTION 5 FIRE-FIGHTING MEASURES** ### Extinguishing media Chemwatch: 5233-15 Page 3 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Reaction Buffer Print Date: 11/01/2017 - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Special protective equipment and precautions for fire-fighters ### Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. ▶ Prevent, by any means available, spillage from entering drains or water courses. - ▶ Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. - Non combustible. - ▶ Not considered to be a significant fire risk. - Expansion or decomposition on heating may lead to violent rupture of containers. - Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). - May emit acrid smoke. Decomposition may produce toxic fumes of: #### Fire/Explosion Hazard carbon dioxide (CO2) hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic material May emit poisonous fumes May emit corrosive fumes. ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up ### Minor Spills - ► Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ► Control personal contact with the substance, by using protective equipment. - Contain and absorb spill with sand, earth, inert material or vermiculite. - ▶ Place in a suitable, labelled container for waste disposal. ## Major Spills - ▶ Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. - The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCI). - Glutathione has also been used to inactivate the isothiazolinones. ▶ Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before - disposal - ▶ If contamination of drains or waterways occurs, advise emergency services - After clean up operations, decontaminate and launder all protective clothing - ▶ and equipment before storing and re-using. Personal Protective Equipment advice is contained in Section 8 of the SDS #### **SECTION 7 HANDLING AND STORAGE** Safe handling ### Precautions for safe handling #### ► DO NOT allow clothing wet with material to stay in contact with skin - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with moisture - Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - ▶ Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. #### Other information - Store in original containers. - Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. Chemwatch: 5233-15 Page 4 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Reaction Buffer Print Date: 11/01/2017 - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities ### Suitable container - ► Polyethylene or polypropylene container. - Packing as recommended by manufacturer. - ▶ Check all containers are clearly labelled and free from leaks Storage incompatibility ► Avoid reaction with oxidising agents #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|--|---------------|-----------|-------------| | tris(hydroxymethyl)aminomethane | Tris-hydroxymethylaminomethane; (THAM) | 18 mg/m3 | 190 mg/m3 | 1,200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | | | | tris(hydroxymethyl)aminomethane | Not Available | Not Available | | | | albumin | Not Available | Not Available | | | | sorbitan monolaurate, ethoxylated | Not Available | Not Available | | | | isothiazolinones, mixed | Not Available | Not Available | | | | Antibodies (not exceeding) | Not Available | Not Available | | | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | 7,75 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | ·p | | |---|------------------------------|--| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | | Within each range the appropriate value depends on: Type of Contaminant
| Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection Air Speed Chemwatch: 5233-15 Page 5 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 #### AlphaScreen SureFire Reaction Buffer Print Date: 11/01/2017 ### Eye and face protection - ► Safety glasses with side shields - Chemical goggles. - ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below - ► Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity #### Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - Butvl rubber gloves - Nitrile rubber gloves # **Body protection** ### See Other protection below ### Other protection - Overalls P.V.C. apron. - ▶ Barrier cream. - Skin cleansing cream. - Eye wash unit. - Thermal hazards Not Available ### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|--------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class 1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties **Appearance** Liquid; mixes with water Chemwatch: 5233-15 Page **6** of **11** Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 ### AlphaScreen SureFire Reaction Buffer | Physical state | Liquid | Relative density (Water = 1) | Not Available | |--|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials
| See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects | al effects | |---| | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | Accidental ingestion of the material may be damaging to the health of the individual. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia | | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dematitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windbum) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids. | | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is a possibility that unintended contact with this product (such as through a cut, needle stick, eye or mucous membrane, or inhalation) could result in allergic or hypersensitivity reactions. Such reactions are more likely following repeated exposures or in persons with a pre-existing allergy to certain proteins. Dusts produced by proteins are capable, under certain conditions, of sensitising workers by virtue of the bodies reaction to foreign proteins. Typical allergic asthma may be rapidly produced after exposure, with symptoms may include chronic cough, sputum production, fever, myalgia, fatigue, ainway obstruction; chest radiographs may show a generalised reticulonodular pattern, or basal or apical fibrosis. In addition there may be retrosternal discomfort, headache, stomach-ache and general severe dyspnoea may develop giving a clinical picture similar to that of farmer's lung and allied conditions of extrinsic allergic alveolitis. No irritation is likely after brief skin contact, but prolonged contact in the presence of moisture may result in soreness, redness, inflammation and possible ulceration of the skin. Repeated attacks may lead to permanent impairment of lung function due to fibrotic change. | | | The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated Chemwatch: **5233-15**Page **7** of **11**Issue Date: **08/12/2016**Version No: **2.1.1.1**Print Date: **11/01/2017** #### AlphaScreen SureFire Reaction Buffer compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones. The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*: - ► The strongest sensitisers are the chlorinated isothiazolinones. - ► There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. - There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones. - Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones. - By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced. - Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons. - ▶ Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available. - * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimuriumstrains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no
local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | AlphaScreen SureFire Reaction
Buffer | TOXICITY Not Available | IRRITATION Not Available | |---|---|--| | tris(hydroxymethyl)aminomethane | TOXICITY Oral (rat) LD50: 5900 mg/kg ^[2] | IRRITATION Not Available | | albumin | TOXICITY Not Available | IRRITATION Not Available | | sorbitan monolaurate,
ethoxylated | TOXICITY Oral (rat) LD50: 39269 mg/kg ^[2] | IRRITATION Skin (human): 15 mg/3d mild | | isothiazolinones, mixed | TOXICITY Oral (rat) LD50: 53 mg/kg ^[2] | IRRITATION Not Available | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances For tris(hydroxymethyl)aminomethane (TRIS AMINO; CAS 77-88-1) and its surrogates 2-amino-2-methyl-1,3-propanediol (AMPD; CAS 115-69-5) and monoisobutanolamine (AMP; CAS 124-68-5) TRIS AMINO and the surrogate chemicals have displayed little if any toxicity to humans during their long history of use as human drugs and/or in personal care products and cosmetics. TRIS AMINO has found use as an IV drug for the management of acidosis in humans for many years and the toxicity of AMPD and AMP have been reviewed by the Cosmetic Ingredient Review Expert Panel which concluded that these materials are safe as used in cosmetic formulations up to 1% Acute toxicity: Mammalian toxicity studies have displayed similar results. The oral LD50 value for TRIS AMINO is 5500 mg/kg in the mouse, and its surrogates range from 2150 to greater than 5000 mg/kg in the rat and mouse. TRIS AMINO was non-irritating to eyes when a 40% aqueous solution was applied to the eyes of rabbits (pH 10.4 for 0.1M aqueous solution). In contrast, 95% AMP in water was severely irritating to the eyes, presumably due to the severely alkaline pH of the test solution used (pH 11.3 for 0.1M aqueous solution); however, more neutral cosmetic formulations containing lower concentrations of AMP are only minimally irritating. There is no sensitisation data available for TRIS AMINO; however, based on the following data, TRIS AMINO is not expected to be a sensitiser. Laboratory animal test samples of AMP did not cause allergic skin reactions when tested in guinea pigs following topical or intradermal administration. In patch tests with humans, AMP and cosmetic formulations containing either AMP or AMPD were negative for dermal sensitisation. TRIS(HYDROXYMETHYL)AMINOMETHANE Repeated dose toxicity. Repeated-dose mammalian toxicity studies conducted on TRIS AMINO and the two surrogate chemicals indicate that the compounds are generally well-tolerated at concentrations as high as 500 mg/kg/day via IV infusion for TRIS AMINO and ingestion of up to 3200 ppm in the rodent diet (250-750 mg/kg/day for rats and mice, estimated). A number of human clinical trials of the IV infusion of TRIS AMINO have also been successfully conducted. In all studies, the only target tissue, when observed at all, has been the liver with AMP. Human clinical studies with Keterolac(a major component of which is TRIS AMINO) have suggested that patients with decreased liver function not be given the drug over extended treatment periods based upon changes in several clinical chemistry parameters. Ingestion of relatively high dosages of AMP has caused liver histopathological changes in rats and dogs. The most significant toxicological activity has been a foetotoxic effect of AMP when ingested at relatively high levels by pregnant rats. Subsequent dermal exposure to comparable dosages failed to elicit a developmental effect in rats. Overall, there have been no consistently-noted observations or treatment-related findings among the numerous repeated-dose mammalian toxicity studies that have been conducted over at last 50 years on these compounds that would indicate long-term significant toxicity of either compound at typical human exposure levels. Reflective of these findings is the fact that both TRIS AMINO and AMP display similar patterns of excretion from the body, being primarily eliminated unchanged via the urine over a relatively short period of time. Further, no evidence of either direct reactivity or metabolism to reactive species toward genetic material has been observed. **Genetic toxicity:** Studies conducted on the TRIS AMINO and the surrogate substances in the presence or absence of mammalian metabolic enzymes have all been negative. Chemwatch: 5233-15 Issue Date: 08/12/2016 Page 8 of 11 Version No: 2.1.1.1 #### AlphaScreen SureFire Reaction Buffer Print Date: 11/01/2017 For Group D aliphatic esters: (sorbitan fatty esters) According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group D substances are esters of monoacids, mainly common fatty acids, and sorbitan (which is derived from sorbitol - a natural carbohydrate sweetener). The fatty acids include lauric, stearic, oleic acids and coca fatty acids (mainly lauric and myristic acids). The hydroxy group in the sorbitan represents the alcohol portion of the ester linkage. The Group D esters are carbohydrate-derived esters since the ester linkage is connected to the hydroxy group(s) of sorbitan. They may have single ester linkages (i.e., sorbitan monoester) or may have multiple ester linkages. as in the case of sorbitan sesquioleate and sorbitan trioleate. Multiple ester linkages with long-chain fatty acids increase lipophilicity and also tend to diminish water solubility. The sorbitan esters are non-ionic surfactant-active agents that typically find use as emulsifiers, stabilizers, and thickeners in foods, cosmetics and medical products. Acute toxicity: Sorbitan esters do not represent a toxicological concern since they are derived from naturally occurring materials and the parent esters are ultimately metabolised back to these same natural constituents: namely, sorbitan and common fatty acids, both of which have low orders of toxicity. The oral LD50 in rats ranged from >2.9 g/kg to > 39.8 g/kg. Numerous sorbitan esters have been studied by acute oral and dermal administration. Results from these studies support the general conclusion that sorbitan fatty acid esters have low orders of acute toxicity. Repeated Dose Toxicity. A large number of subchronic oral and dermal studies and chronic oral feeding studies have been carried out for sorbitan monolaurate, sorbitan monostearate and sorbitan monooleate, For sorbitan monostearate, no adverse effects were reported in rats fed 5% concentrations of the test substance in the diet for 6 weeks. The NOAEL was estimated to be 5% or approximately 2500 mg/kg/day. In 2-year feeding studies at 5, 10 and 20% in the diet rats tolerated sorbitan moonostearate with no adverse effects. However, at 20%, there was a small but significant decrease on growth rate in male rates. Hence, the NOAEL was 10% in the diet or approximately 5000 mg/kg/day in rats, based on these findings. In a 80-week dietary study in mice, no adverse effects were observed for sorbitan monostearate at 2% concentration in the diet and the NOAEL was 2% or approximately 2600 mg/kg/day. Subchronic studies have also been carried out with sorbitan, fatty acids C6-10, tetraester (CAS 228573-47-5). Oral gavage studies for 28 days at dose levels up to 1000 mg/kg /day resulted in no systemic toxicity. Therefore, the NOAEL was 1000 mg/kg/day for this tetraester. #### Since the sesquioleate and trioleate of sorbitan are merely multiple ester homologs of sorbitan monooleate, they would be expected to show similar effects, given their structural similarities and potential to be metabolised to the monooleate. Sensitisation: Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitising, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix. Reproductive and developmental toxicity: Limited reproductive toxicity data have been reported for the sorbitan esters. In a 2-year feeding studies in rats with sorbitan monostearate, there were no effects on gestation and fertility at any dose level (0, 5, 10 and 20% in the diet) but survival of the newborn animals and maternal lactation were slightly diminished at the 20% level. Sorbitol was also studied indirectly as part of a mixture of hydrogenated starch hydrolysates (HSH) which contained about 7% sorbitol as part of the polyhydric alcohol mixture. The HSH mixture was investigated as part of a two-year ingestion study, a multigeneration reproduction study and a teratology study. At concentrations of 18% in drinking water (3000-7000 mg/kg/day), HSH did not produce reproductive or developmental effects . These results indicate that sorbitol does not cause reproductive/ developmental toxicity in animals. Given these findings and the low order of toxicity of natural fatty acids, it seems unlikely that sorbitan esters would present reproductive and developmental toxicity concerns. Genotoxicity: Sorbitan monostearate (CAS 1338-41-6) was found to be negative in the Ames assay. In addition, the non-HPV substance, sorbitan fatty acid C6-10 tetraester (CAS 228573-47-5), did not cause any mutagenic effects in the Salmonella in vitro test. These substances bridge the low and high carbon range of most of the sorbitan esters and the chemistry of the
sorbitan esters (i.e., sorbitan/ sorbitol, natural fatty acids) does not suggest the likelihood that the sorbitan esters are electrophilic or reactive in nature. Thus, it is not likely that the substances in Group D cause mutagenic effects. Sorbitan monostearate did not transform primary Syrian golden hamster embryo cells. As discussed above for point mutation, the chemistry of the sorbitan esters does not suggest the likelihood that these substances, or their constituent substructures (i.e., sorbitol, fatty acids) are reactive or electrophilic in nature. Carcinogenicity: Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture. sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study. ### ISOTHIAZOLINONES, MIXED SORBITAN MONOLAURATE. **ETHOXYLATED** The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. #### TRIS(HYDROXYMETHYL)AMINOMETHANE & ISOTHIAZOLINONES, MIXED Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus #### **ALBUMIN & ISOTHIAZOLINONES, MIXED** No significant acute toxicological data identified in literature search. #### SORBITAN MONOLAURATE. ETHOXYLATED & ISOTHIAZOLINONES, MIXED The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | 💢 – Data available but does not fill the criteria for classification – Data required to make classification available Data Not Available to make classification Chemwatch: **5233-15**Page **9** of **11**Issue Date: **08/12/2016**Version No: **2.1.1.1**Print Date: **11/01/2017** #### AlphaScreen SureFire Reaction Buffer #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------------------|--|--------------------|-------------------------------|--------------|--------| | tris(hydroxymethyl)aminomethane | LC50 | 96 | Fish | 6333.997mg/L | 3 | | tris(hydroxymethyl)aminomethane | EC50 | 48 | Crustacea | >980mg/L | 2 | | tris(hydroxymethyl)aminomethane | EC50 | 96 | Algae or other aquatic plants | 163.049mg/L | 3 | | tris(hydroxymethyl)aminomethane | NOEC | 48 | Crustacea | 520mg/L | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|-------------------------|------------------| | tris(hydroxymethyl)aminomethane | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---------------------------------|------------------------| | tris(hydroxymethyl)aminomethane | LOW (LogKOW = -1.5606) | #### Mobility in soil | Ingredient | Mobility | |---------------------------------|----------------| | tris(hydroxymethyl)aminomethane | HIGH (KOC = 1) | ### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ► Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** Marine Pollutant NO Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Chemwatch: 5233-15 Page 10 of 11 Issue Date: 08/12/2016 Version No: 2.1.1.1 Print Date: 11/01/2017 #### AlphaScreen SureFire Reaction Buffer Not Applicable ### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture TRIS(HYDROXYMETHYL)AMINOMETHANE(77-86-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act
(TSCA) - Chemical Substance Inventory #### ALBUMIN(9048-46-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### SORBITAN MONOLAURATE, ETHOXYLATED(9005-64-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable #### **Federal Regulations** #### Superfund Amendments and Reauthorization Act of 1986 (SARA) ### SECTION 311/312 HAZARD CATEGORIES | Immediate (acute) health hazard | Yes | |---------------------------------|-----| | Delayed (chronic) health hazard | No | | Fire hazard | No | | Pressure hazard | No | | Reactivity hazard | No | #### US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4) None Reported #### State Regulations #### US. CALIFORNIA PROPOSITION 65 None Reported | National Inventory | Status | |----------------------------------|---| | Australia - AICS | N (isothiazolinones, mixed) | | Canada - DSL | Y | | Canada - NDSL | N (isothiazolinones, mixed; tris(hydroxymethyl)aminomethane; sorbitan monolaurate, ethoxylated) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | N (isothiazolinones, mixed) | | Japan - ENCS | N (albumin) | | Korea - KECI | Υ | | New Zealand - NZIoC | Y | | Philippines - PICCS | Υ | | USA - TSCA | N (isothiazolinones, mixed) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** ### Other information ### Ingredients with multiple cas numbers | _ - | | |---------------------------------|--| | Name | CAS No | | tris(hydroxymethyl)aminomethane | 77-86-1, 108195-86-4, 119320-15-9, 25149-07-9, 68755-45-3, 83147-39-1, 857365-23-2 | | albumin | 9048-46-8, 70024-90-7, 68551-06-4, 94349-60-7, 9048-49-1, 12623-95-9, 54577-67-2 | | isothiazolinones, mixed | 55965-84-9, 96118-96-6 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** Issue Date: 08/12/2016 Chemwatch: 5233-15 Page 11 of 11 Version No: 2.1.1.1 ### AlphaScreen SureFire Reaction Buffer Print Date: 11/01/2017 PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.