Case Study

Materials Characterization: UV/Vis/NIR Spectroscopy

计算防晒霜 SPF值的 体外光谱 方法

引言

太阳发出可以到达地球的紫外线 (UV) A和紫外线B, 二者均是电磁波的一部分。UVA的波长范围是400~320 nm, UVB的波长范围是320~290 nm。UVA可以穿透皮肤外部的表皮层和内部的真皮层, 是表皮层角质化细胞破坏 (皮肤癌中常见的现象) 的主要因

素。虽然UVB不能穿透真皮层,但是其波长较短,所以强度更高。两种紫外线都可能都可能导致晒伤、皮肤癌和其他皮肤损伤,对人类造成严重的伤害。为了防止这些伤害的发生,一般建议使用防晒霜。防晒霜可以吸收或者反射有害的紫外线,阻止其到达皮肤,从而达到保护皮肤的目的。暴露于阳光下时,使用防晒霜可以极大降低损伤皮肤细胞和产生皮肤癌的风险。在本研究中,使用PerkinElmer® Lambda™ 1050紫外-可见-近红外光谱仪和150 mm积分球测量医用胶带基底上防晒霜的漫透射数据。使用胶带作为人类皮肤的模拟物测试防晒霜的防晒系数 (SPF),比使用人类皮肤更加方便而且经济。

Author

Jillian F. Dlugos

Glenelg High School Glenelg, MD USA

PerkinElmer, Inc. Shelton, CT USA

实验部分

使用透射方法测试了多种品牌的医用胶带,以确定哪种胶带是最好的人类皮肤替代品。使用医用胶带作为防晒霜测试的人类皮肤替代品,比在真实皮肤上进行产品测试更加安全。为了用透射方法测试胶带和猪皮,样品需要放置于积分球前方的透射口。图1所示为150 mm积分球的光路图,标明了进行散透射测试时样品的放置位置(透射口)。

图1 150 mm积分球的光路图

使用透射方式测试样品是计算光线穿过样品的程度,据此也可以知道样品对光线的吸收程度。图2说明了将样品放置在透射口进行测试时,光线穿过样品后的情况。

图2使用积分球进行漫透射测试时的样品光路

医用胶带、猪皮和人类皮肤都是不完全透明的样品,会对光源发出的光产生散射作用。在光源发出的光束穿过样品之后,积分球可以收集散射光。对胶带透射光谱与猪皮透射光谱进行比较,以确定哪种品牌的胶带可以最准确地模拟人类皮肤。Nexcare® Transpore医用胶带与猪皮的光谱最

为接近。接下来,使用透射模式对不同层数的胶带进行测试。结果表明,在双层、三层和四层胶带中,背靠背放置的双层胶带与猪皮最为接近。图3所示为猪皮和胶带在UVA和UVB区域的透过率光谱。

图3表皮(猪)与胶带的漫透射光谱比较(UVA+UVB)

图4胶带及其涂抹防晒霜后的漫透射光谱

确定了能够最好地模拟猪皮的胶带类型与层数之后,可以使用胶带代替真正的人类皮肤测试各种防晒霜使用方式。所使用的测试方式为: 用手指将防晒霜涂抹于胶带的两面, 或者在胶带上喷洒两次防晒霜。使用在胶带上的防晒霜是Sport® Sunscreen SPF 30.

图5吸光度形式的漫透射光谱

图4所示为双层Nexcare医用胶带、涂抹了防晒霜的双层胶带 (两面)以及喷洒了两次防晒霜的双层胶带的百分比透过率光谱。光谱测试范围为250~800 nm,以观察样品的散射性质。S形曲线的产生是因为样品上有防晒霜。为了计算防晒霜的SPF,需要对原始光谱进行一些处理。首先,透过率光谱(图4)需要转换成吸光度光谱(图5)。

接下来,需要从使用了防晒霜的胶带光谱中减去胶带本身的光谱,从而获得防晒霜的光谱。差谱处理使得图5中的黑色线变为平直的零基线。在减去了胶带的光谱之后,将防晒霜的光谱转换回百分比透过率谱。将百分比透过率谱除以100,得到透射比光谱。百分比透过率是0到100之间的数值。透射比是0到1之间的数值。

图6用于电子表格计算SPF的转化为透射比的胶带和防晒霜光谱

图6显示了可以用于计算SPF值的透射比光谱。图7所示为复制到Excel®电子表格中的数据以及计算的SPF值。SPF计算过程中只使用290~400 nm的数据,也就是UVA与UVB区域。

	A			.0	4	- A	- 6	
1	Wavelength nex	f (from spectra)	1/1	Erythema action spectrum	UVA radiation source W.m-Jmm 1		17	E*/(1/f)
22	320	0.021894	45.67463405	8,555-03	4.84E-02		4.148-04	9.078-00
94	321	0.023#66	48.15100609	6.898-03	8.47E-02		3.838-04	1.265-05
35	322	0.021375	46.76362573	8.58E-00	1.06E-01		7.525-04	1.615-05
36	323	0.020794	48.1119938	4,47E-03	2.07E-01		9.279-04	1.916-05
17	324	0.020897	49.02661767	3.60E-03	3.03E-01		1.096-03	2.226-05
98	326	0.020875	49.0797546	2.905-03	4.29E-01		1.349-03	2.516-03
29	326	0.020197	45/31230301	2,335-03	7.605-01		L-776-09	5-565-65
40	327	0.020236	49.41600061	1,88E-03	9.85E-01		1.656-03	3.746-05
E1	329	0.020369	49.01642500	1.51E-03	1.22E+00		1.015-03	3,736-18
62	329	0.020039	49.77540574	1.415-03	1.51E+00		2.196-00	4.276-10
43	330	0.020092	49.77105816	1.36E-03	1.81E+00		2.476-05	4.978-05
44	331	0.000004	49.21137904	1,32E-03	2.13E+00		2.616-01	3.716-13
40	302	0.02011	49-23662913	1.27E-00	2.44E+00		3-110-03	0.320-03
25	333	0.020319	49.21502042	1.236-03	2.83E+00		3.496-03	7.08E-05
47	334	0.03034	49.40713462	1,195-03	3.19E+00		3.796-03	7.665-05
13	340	E:02043	45/34762504	9.665-04	5.61E+00		5.425-01	1.115-04
102	388	0.31016	4.758279406	1.845-04	2.01E+00		3.705-04	7.766-05
172	389	0.243037	4.114595835	1.78E-04	1.64E+00		2.525-04	7.056-03
103	390	0.280132	3.369743491	1.72E-04	1.31E+00		2.296-04	8-31E-05
24	391	0.823495	8-112088248	1.565-04	1.03E+00		1.715-04	5.495-05
155	392	0.366858	2.721810929	1.50E-04	7.90E-01		1.276-04	4.646-15
(Dist	393	0.41549	2.407979201	1.55E-04	5.98E-01		8.258-Eb	1.000.00
UFF.	394	0.409109	2.345420903	1,505-04	4.456-01		5.600-03	\$118-10
CH.	395	0.528395	1.525030901	1,45E-04	3.26E-01		4.718-05	2.415-05
1209	395	0.569993	1.75140751	1.40E-04	2.30E-01		3.215-05	1,810-05
110	397	0.620467	1.611687311	1.350-04	1.60E-01		2.136-05	1.326-05
113	398	0.668258	1.496403634	1,305-04	1.04E-01		1,366-05	9.106-08
122	399	0.712402	1.401701842	1.265-04	4.84E-02		8.108-06	4348-00
115	400	0.772025	1.125727723	1,225-04	8.47E-02		1.050-05	7.74E-00
114	7.77		- CAMPAGES	1100000			2000111	1121112
115						sum =	2.495-01	8.075-03
116								
117							SPF Value s	30.84
LIS.								-0.04

图7用于计算SPF的电子表格示例

SPF的计算公式为:

$$\mathsf{SPF} = \frac{\int A(\lambda)E(\lambda)d\lambda}{\int A(\lambda)E(\lambda)/\mathsf{MPF}(\lambda)d\lambda}$$

其中, $d(\lambda)=1$ nm, $A(\lambda)$ 代表红斑反应光谱 (Erythema Action Spectrum), $E(\lambda)$ 代表太阳辐射能量, 而MPF(λ)代表光线被吸收的程度以及破坏皮肤细胞的能力。MPF是对应波长处透射率的倒数。

图8 随波长变化的用于计算SPF值的常数

图8所示为随波长变化的SPF常数:辐射能量与反应单位的乘积(EXA)。绿色点线代表了不同波长处太阳的辐射能量。从图中可以看出,350~370 nm区域的太阳辐射能量最强。在SPF计算公式中,E与A相乘。E代表太阳辐射强度。A代表红斑反应光谱,其单位如右侧纵轴所示。黑线显示了E与A的乘积,代表了皮肤对光线的吸收程度,以及太阳辐射对皮肤细胞造成损伤的能力。

结果

试验中SPF计算值与Sport Sunscreen包装上的标注值一致, 说明Transpore胶带可以成功替代人类皮肤进行SPF测试。图 3说明了Transpore胶带与猪皮非常相似,而猪皮与人类皮肤 的性质非常相似。

表1 Sport® Sunscreen Sl	PF 30的SPF计算值
------------------------	--------------

	SPF UVA	SPF UVA + UVB
One Application	30.84	39.07
Two Applications	50.1	80.76

Sport Sunscreen含有5种不同的防晒剂,标注SPF值为30.该防晒霜中含有3%Avobenzone(阿伏苯宗,阻挡UVA)、10%Homosalate(水杨酸三甲环己酯,阻挡UVB)、5%Octisalate(辛水杨酯,阻挡UVB)、2%Octocrylene(氰双苯丙烯酸辛酯,阻挡UVB)和4%Oxybenzone(羟苯甲酮,阻挡UVA和UVB)。UVA与UVB遮光剂的混合物覆盖了400~290nm区域。图5显示了防晒霜的遮光效果。

本实验中,在胶带上单次使用防晒霜时计算出的SPF为30.84(只计算UVA区域,这也是FDA认可的方法)。两次使用防晒霜时,SPF值几乎加倍,因为胶带上的防晒霜含量增加了一倍。无论是单次使用还是两次使用,根据UVA+UVB计算的SPF值都有所增加,因为防晒霜阻挡了更多的电磁波谱,保护皮肤免受紫外线的伤害。

结论

本实验成功地使用医用胶带做为人类皮肤的替代物,使得不同防晒霜可以在胶带上进行测试,而不需要使用真正的人类皮肤。无论是用于科学研究还是质量控制, Lambda 1050紫外-可见-近红外光谱仪和150 mm积分球的结合为防晒霜活性成分SPF值的测试提供了优异的平台。

PerkinElmer, Inc.

珀金埃尔默仪器(上海)有限公司

地址:上海张江高科园区李冰路67弄4号

邮编: 201203

电话: 800 820 5046 或 021-38769510

传真: 021-50791316 www.perkinelmer.com.cn

