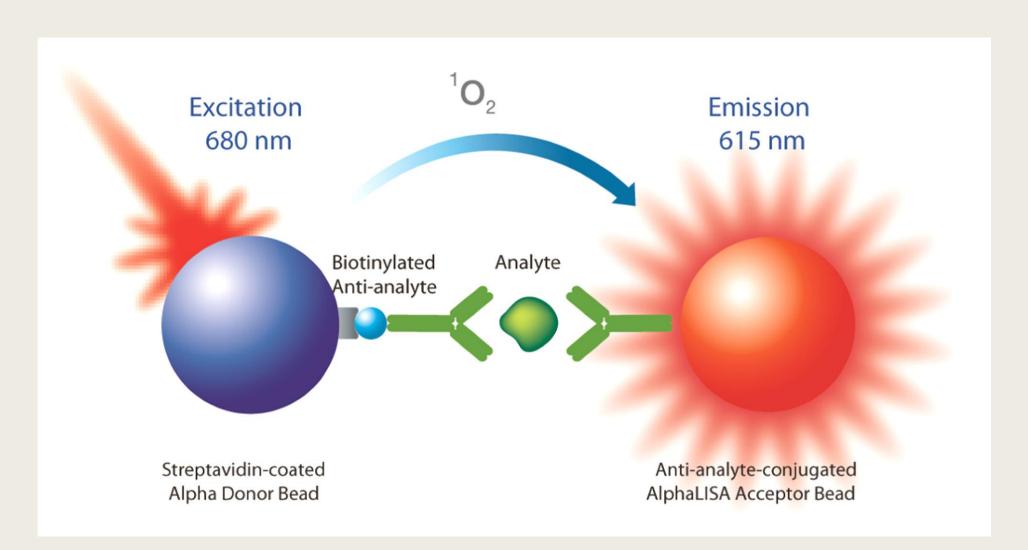


# Efficient AlphaLISA immunoassays for the detection and characterization of monoclonal antibody biotherapeutics

Geneviève Pinard, Claire Normand, Valérie Paquet, Wolfgang Reintsch, Lenka Rihakova, Mireille Caron, Michael Lomotan, Julie Bédard, Véronique Brechler and Francesco Lipari

PerkinElmer BioSignal, Inc., 1744 William St., Montreal, QC, H3J 1R4, Canada


# Summary

Immunoassays are commonly used in the development and characterization of therapeutic monoclonal antibodies (TAbs). There is an increasing need for efficient and sensitive assays to detect and characterize TAbs during various stages development. The most common technology for performing immunoassays is the enzyme-linked immunosorbent assay (ELISA), which is a robust method but requires multiple and time-consuming steps that can lead to variable data. The AlphaLISA® assay format is a chemiluminescent homogeneous bead-based technology which does not require washing or separation steps, and as such provides significant advantages over ELISA. AlphaLISA assays are typically performed in 96- or 384-well plates and can be run with sample volumes as low as 5 µL, conserving valuable test materials. The total assay time is less than 3 hours, which is half the time of a normal ELISA. Several new AlphaLISA assays have been developed to characterize monoclonal antibody biotherapeutics:

- Detection of fucosylated IgG by use of an anti-IgG antibody and a core fucose-specific lectin.
- Detection of bioprocess contaminants such as host cell proteins (CHO and PER.C6® HCP).
- Quantitation of therapeutic antibodies measuring total human IgG1 or IgG4.

Data provided here demonstrate that AlphaLISA technology provides a versatile assay platform for improving various analytical assays in the modern biotherapeutics development laboratory.

# AlphaLISA Technology Principle



The biotinylated anti-analyte antibody binds to the Streptavidincoated Alpha Donor beads while another anti-analyte antibody is conjugated to AlphaLISA Acceptor beads. In the presence of the analyte, the beads come into close proximity. The 680 nm laser excitation of the Donor beads provokes the release of singlet oxygen molecules that triggers a cascade of energy transfer in the Acceptor beads resulting in a sharp peak of light emission at 615 nm.

## Materials

### **AlphaLISA products (PerkinElmer):**

### Standalone products:

- AlphaLISA Acceptor beads: Lens culinaris agglutinin (LCA) (#AL140), Anti-Human IgG1 (#AL141), Anti-Human IgG4 (#AL142).
- Alpha Donor beads: Streptavidin Donor beads (#6760002S)

## AlphaLISA kits:

- Chinese Hamster Ovary Cell Host Cell Proteins (CHO HCP) (#AL210)
- CHO HCP (broad reactivity) (#AL301)
- PER.C6® Cell Host Cell Proteins (PER.C6® HCP) (#AL302)
- Human Immunoglobulin G subclass 1 (IgG1) (pharmacokinetic) (#AL303)
- Human Immunoglobulin G subclass 4 (IgG4) (pharmacokinetic) (#AL304).

#### Other materials required for fucosylated IgG4 detection assay (section 5):

- Human IgG4, Fitzgerald (#31-AI20)
- AffiniPure F(ab')2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific, Bethyl Laboratories (#A80-248A)

# AlphaLISA: quick, simple, precise

5 μL Standard or Sample



Add 10 µL of AlphaLISA Anti-Analyte Acceptor beads



Add 10 µL of Biotinylated Anti-Analyte Antibody

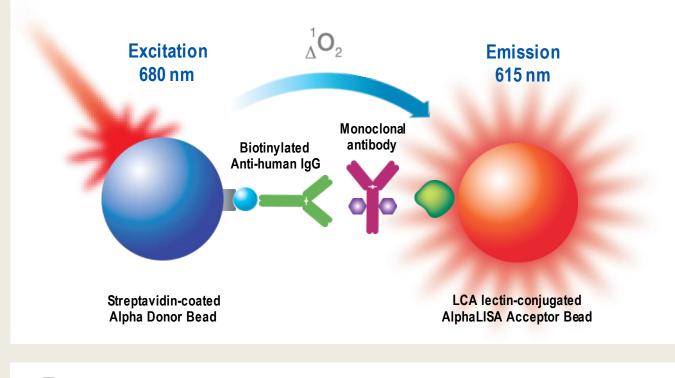


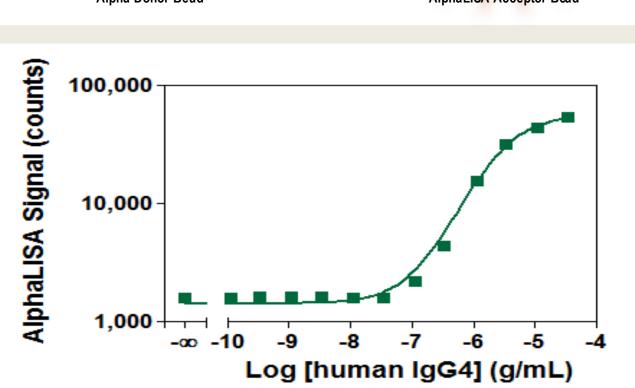
Incubate 60 minutes

Add 25 µL of Streptavidin Alpha Donor beads

Incubate 30 minutes

Read at 615 nm using EnVision® or EnSpire® Multimode Plate Reader and analyze data


#### Typical assay precision data


| I      | intra-assa      | y precisio    | 1             | I      | nter-assa       | y precision   | า            |
|--------|-----------------|---------------|---------------|--------|-----------------|---------------|--------------|
| Sample | Mean<br>(pg/mL) | SD<br>(pg/mL) | %CV<br>(n=18) | Sample | Mean<br>(pg/mL) | SD<br>(pg/mL) | %CV<br>(n=6) |
| А      | 92 819          | 6 955         | 7.5           | А      | 92 819          | 10 650        | 11.5         |
| В      | 10 765          | 641           | 6.0           | В      | 10 765          | 1 137         | 10.6         |
| С      | 1 049           | 92            | 8.8           | С      | 1 049           | 180           | 17.2         |

Precision of CHO HCP assay (Cat. no. AL210). Assay precision data were calculated from a total of 18 assays. Two operators performed three independent assays using three different kit lots. Each assay consisted of one standard curve and three control samples of high (A), medium (B) and low (C) concentrations, assayed in triplicate.

# Fucosylated IgG detection

The carbohydrates or glycans linked on the biotherapeutic antibody may play a major role in the mechanism of action as well as biodistribution of the drug. Detection of core fucose on monoclonal antibodies using Alpha technology can be used for antibody screening and characterization. The fucosylated IgG assay is based on the detection of core fucose by lens culinaris agglutinin (LCA), which has a high specificity for  $\alpha$ 1,6-linked fucose 1.





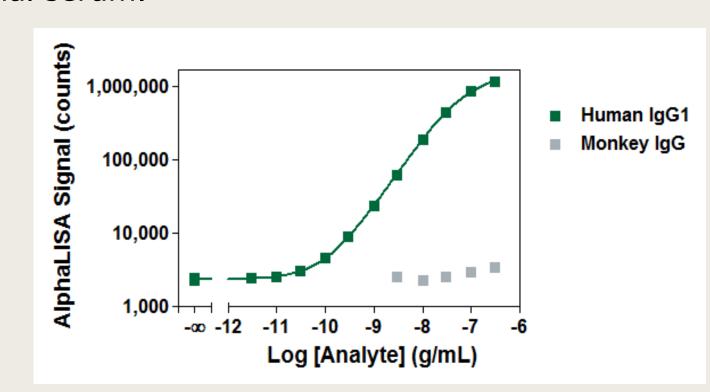
Detection of fucosylated IgG4 in serum-free cell culture medium. Human IgG4 from myeloma plasma was diluted in cell culture medium (Hybridoma-SFM Gibco #12045-084). Fucosylated IgG4 was then detected in a typical AlphaLISA protocol using Streptavidin Alpha Donor beads, biotinylated anti-human IgG and AlphaLISA LCA Acceptor beads.

## CHO and PER.C6® HCP assays

The CHO and PER.C6® HCP assays measure the presence of contaminating proteins in purification samples. Two CHO HCP kits have been developed (AL210 and AL301). The second product is identified as "broad reactivity", because the antibodies have been shown to detect more CHO proteins than the previous kit. Ideally, both assays should be tested for a given process to determine the most suitable. The lower detection limit and upper limit of detection are provided in the following table.

| Catalogue<br>number | Kit name                   | Lower detection limit * (ng/mL) | Upper limit ** (μg/mL) |
|---------------------|----------------------------|---------------------------------|------------------------|
| AL210               | CHO HCP                    | 0.18                            | 0.3                    |
| AL301               | CHO HCP (broad reactivity) | 0.45                            | 1                      |
| AL302               | PER.C6® HCP                | 0.78                            | 3                      |

\* Calculated by interpolating the average background counts (12 wells without analyte) +  $3 \times 3$  x standard deviation value on the standard curve. \*\* Corresponds to analyte concentration on the standard curve giving maximum


signal.

## 7 Pharmacokinetics of TAbs

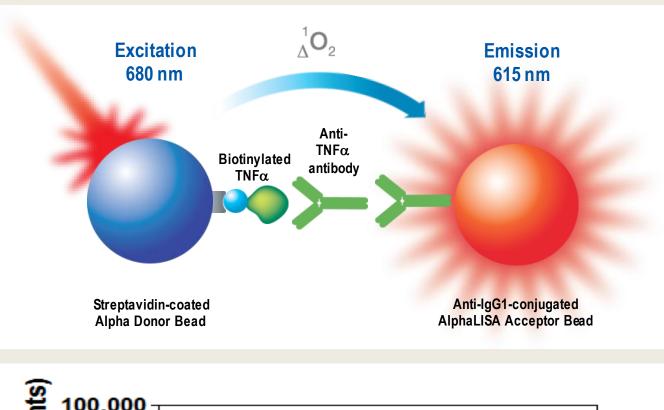
During the exploratory and pre-clinical phases, pharmacokinetic studies of TAbs are commonly performed in rodents or monkeys (non-human primates). TAb is injected into the animal and then measured in the serum at different time points. The TAb is measured using a generic IgG assay or a ligand binding assay.

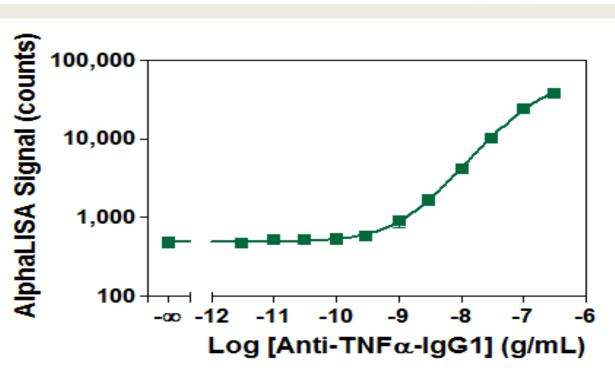
#### Generic IgG assay

A combination of an anti-human IgG antibody, monkeyadsorbed, and a subclass specific anti-IgG1 or 4 antibody are used to obtain highly sensitive assays to measure IgG1 or IgG4 in animal serum.



Sensitivity and specificity of the human IgG1 assay. Human IgG1 purified from myeloma plasma or total IgG from cynomolgus monkey were diluted in buffer and detected using a typical AlphaLISA protocol. The human IgG1 is detected down to a level of 20 pg/mL, whereas 300 ng/mL of monkey IgG gives only background signal.


| Linearity       |            |  |  |  |
|-----------------|------------|--|--|--|
| Dilution factor | % Recovery |  |  |  |
| 1               | 100        |  |  |  |
| 2               | 89         |  |  |  |
| 4               | 83         |  |  |  |
| 8               | 83         |  |  |  |
| 16              | Q/I        |  |  |  |


| Spike recovery |            |  |
|----------------|------------|--|
| Spike (ng/mL)  | % Recovery |  |
| 100            | 85         |  |
| 10             | 82         |  |
| 1              | 86         |  |

Accuracy of the human IgG1 assay in monkey serum. 10% monkey serum was used as analyte diluent. A pool of monkey sera spiked with 1000 ng/mL of human IgG1 was initially diluted 10-fold with buffer. This sample containing 100 ng/mL IgG1 was used for the linearity experiment. The recovery for linearity was calculated using the undiluted sample (1X) as the 100% value. For spike recovery, the recovery was calculated based on the theoretical amount of IgG1 present.

### Ligand binding assay

Monoclonal antibodies specific to either IgG1 or IgG4 subclass were conjugated to AlphaLISA Acceptor beads to be used for AlphaLISA assays to measure TAb in serum via a ligand binding assay. A human monoclonal antibody specific to TNF $\alpha$  was used as a model to demonstrate the application of the assay for detection of a TAb in monkey serum.





Detection of anti-TNF $\alpha$  antibody in monkey serum. A monoclonal antibody (IgG1 subclass) against TNF $\alpha$  was diluted in 10% monkey serum and detected using anti-IgG1-conjugated Acceptor beads with biotinylated TNF $\alpha$  as ligand. The lower detection limit was 0.3 ng/mL.

## Summary

Sensitive and reproducible immunoassays were developed for analyses of biotherapeutics. These assays can be applied in different stages of TAb development, such as cloning and expression, process development and pharmacokinetic studies.

### References

1. Tateno, H. et al. Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19, 527-536 (2009).